In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: Stromal cell-derived factor-1, steel factor, and the bone marrow environment

Chang H. Kim, Hal Broxmeyer

Research output: Contribution to journalArticle

343 Citations (Scopus)

Abstract

How multiple chemoattractants cooperate in directing the migration of hematopoietic progenitor cells (HPC) for homing and peripheral blood mobilization has not yet been established. We report here the behavior of HPC under the influence of two different chemoattractants, stromal cell-derived factor (SDF)-1 and steel factor (SLF), and the chemotactic nature of the bone marrow (BM) environment using a two-chamber in vitro migration system. Various formulae were adopted to quantitate these effects. Based on these quantitations, SDF-1 showed only chemotactic activity, while SLF showed both chemotactic and chemokinetic activities on factor-dependant MO7e cells. SLF, like SDF-1, attracted human HPC from a population of CD34+ cells and induced actin polymerization in MO7e cells. SLF and SDF-1 cooperated in attracting MO7e cells, as well as cord blood (CB) and BM CD34+ cells. A negative concentration gradient of SLF and SDF-1, formed by the presence of chemoattractants in the upper chamber, showed potent inhibitory effects on MO7e cell migration induced by either of these chemoattractants in the lower chamber, and SDF-1 and SLF were synergistic in mobilizing cells to the lower chamber from this negative chemoattractant gradient. Plasma obtained from BM aspirates, but not CB or peripheral blood, showed strong chemotactic effects on BM and CB CD34+ cells, and an inhibitory effect in a negative gradient on SDF-1-dependent CD34+ cell migration. These in vitro migration experiments suggest that chemoattractants such as SDF-1 and SLF with other unidentified BM chemoattractants may be involved cooperatively in the migration of HPC to the BM and in preventing spontaneous mobilization of HPC out of the BM.

Original languageEnglish
Pages (from-to)100-110
Number of pages11
JournalBlood
Volume91
Issue number1
StatePublished - Jan 1 1998

Fingerprint

Chemokine CXCL12
Stem Cell Factor
Chemotactic Factors
Hematopoietic Stem Cells
Bone
Bone Marrow
Blood
Fetal Blood
Cell Movement
In Vitro Techniques
Polymerization
Bone Marrow Cells
Actins
Blood Cells
Plasmas

ASJC Scopus subject areas

  • Hematology

Cite this

@article{6ff0d01372b84351a67a1b1d9384ca81,
title = "In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: Stromal cell-derived factor-1, steel factor, and the bone marrow environment",
abstract = "How multiple chemoattractants cooperate in directing the migration of hematopoietic progenitor cells (HPC) for homing and peripheral blood mobilization has not yet been established. We report here the behavior of HPC under the influence of two different chemoattractants, stromal cell-derived factor (SDF)-1 and steel factor (SLF), and the chemotactic nature of the bone marrow (BM) environment using a two-chamber in vitro migration system. Various formulae were adopted to quantitate these effects. Based on these quantitations, SDF-1 showed only chemotactic activity, while SLF showed both chemotactic and chemokinetic activities on factor-dependant MO7e cells. SLF, like SDF-1, attracted human HPC from a population of CD34+ cells and induced actin polymerization in MO7e cells. SLF and SDF-1 cooperated in attracting MO7e cells, as well as cord blood (CB) and BM CD34+ cells. A negative concentration gradient of SLF and SDF-1, formed by the presence of chemoattractants in the upper chamber, showed potent inhibitory effects on MO7e cell migration induced by either of these chemoattractants in the lower chamber, and SDF-1 and SLF were synergistic in mobilizing cells to the lower chamber from this negative chemoattractant gradient. Plasma obtained from BM aspirates, but not CB or peripheral blood, showed strong chemotactic effects on BM and CB CD34+ cells, and an inhibitory effect in a negative gradient on SDF-1-dependent CD34+ cell migration. These in vitro migration experiments suggest that chemoattractants such as SDF-1 and SLF with other unidentified BM chemoattractants may be involved cooperatively in the migration of HPC to the BM and in preventing spontaneous mobilization of HPC out of the BM.",
author = "Kim, {Chang H.} and Hal Broxmeyer",
year = "1998",
month = "1",
day = "1",
language = "English",
volume = "91",
pages = "100--110",
journal = "Blood",
issn = "0006-4971",
publisher = "American Society of Hematology",
number = "1",

}

TY - JOUR

T1 - In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants

T2 - Stromal cell-derived factor-1, steel factor, and the bone marrow environment

AU - Kim, Chang H.

AU - Broxmeyer, Hal

PY - 1998/1/1

Y1 - 1998/1/1

N2 - How multiple chemoattractants cooperate in directing the migration of hematopoietic progenitor cells (HPC) for homing and peripheral blood mobilization has not yet been established. We report here the behavior of HPC under the influence of two different chemoattractants, stromal cell-derived factor (SDF)-1 and steel factor (SLF), and the chemotactic nature of the bone marrow (BM) environment using a two-chamber in vitro migration system. Various formulae were adopted to quantitate these effects. Based on these quantitations, SDF-1 showed only chemotactic activity, while SLF showed both chemotactic and chemokinetic activities on factor-dependant MO7e cells. SLF, like SDF-1, attracted human HPC from a population of CD34+ cells and induced actin polymerization in MO7e cells. SLF and SDF-1 cooperated in attracting MO7e cells, as well as cord blood (CB) and BM CD34+ cells. A negative concentration gradient of SLF and SDF-1, formed by the presence of chemoattractants in the upper chamber, showed potent inhibitory effects on MO7e cell migration induced by either of these chemoattractants in the lower chamber, and SDF-1 and SLF were synergistic in mobilizing cells to the lower chamber from this negative chemoattractant gradient. Plasma obtained from BM aspirates, but not CB or peripheral blood, showed strong chemotactic effects on BM and CB CD34+ cells, and an inhibitory effect in a negative gradient on SDF-1-dependent CD34+ cell migration. These in vitro migration experiments suggest that chemoattractants such as SDF-1 and SLF with other unidentified BM chemoattractants may be involved cooperatively in the migration of HPC to the BM and in preventing spontaneous mobilization of HPC out of the BM.

AB - How multiple chemoattractants cooperate in directing the migration of hematopoietic progenitor cells (HPC) for homing and peripheral blood mobilization has not yet been established. We report here the behavior of HPC under the influence of two different chemoattractants, stromal cell-derived factor (SDF)-1 and steel factor (SLF), and the chemotactic nature of the bone marrow (BM) environment using a two-chamber in vitro migration system. Various formulae were adopted to quantitate these effects. Based on these quantitations, SDF-1 showed only chemotactic activity, while SLF showed both chemotactic and chemokinetic activities on factor-dependant MO7e cells. SLF, like SDF-1, attracted human HPC from a population of CD34+ cells and induced actin polymerization in MO7e cells. SLF and SDF-1 cooperated in attracting MO7e cells, as well as cord blood (CB) and BM CD34+ cells. A negative concentration gradient of SLF and SDF-1, formed by the presence of chemoattractants in the upper chamber, showed potent inhibitory effects on MO7e cell migration induced by either of these chemoattractants in the lower chamber, and SDF-1 and SLF were synergistic in mobilizing cells to the lower chamber from this negative chemoattractant gradient. Plasma obtained from BM aspirates, but not CB or peripheral blood, showed strong chemotactic effects on BM and CB CD34+ cells, and an inhibitory effect in a negative gradient on SDF-1-dependent CD34+ cell migration. These in vitro migration experiments suggest that chemoattractants such as SDF-1 and SLF with other unidentified BM chemoattractants may be involved cooperatively in the migration of HPC to the BM and in preventing spontaneous mobilization of HPC out of the BM.

UR - http://www.scopus.com/inward/record.url?scp=0031985282&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031985282&partnerID=8YFLogxK

M3 - Article

C2 - 9414273

AN - SCOPUS:0031985282

VL - 91

SP - 100

EP - 110

JO - Blood

JF - Blood

SN - 0006-4971

IS - 1

ER -