In vitro progression of artificial white spot lesions sealed with an infiltrant resin

Rakhi Gelani, Andrea Ferreira Zandona, Frank Lippert, Malgorzata Maria Kamocka, George Eckert

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

This study assessed the ability of an infiltrant resin (Icon, DMG Chemisch-Pharmazeutische Fabrik GmbH, Hamburg, Germany) to prevent artificial lesion progression in vitro when used to impregnate white spot lesions and also assessed the effect of saliva contamination on resin infiltration. Enamel specimens (n=252) were prepared and covered with nail varnish, leaving a window of sound enamel. After demineralization (pH 5.0; four weeks), specimens were divided into six groups (n=42 per group): group 1, 2% fluoride gel (positive control); group 2, resin infiltrant; group 3, resin infiltrant + fluoride gel; group 4, no treatment (negative control); group 5, resin infiltrant application after saliva contamination; and group 6, resin infiltrant + fluoride gel after saliva contamination. Specimens from each group were cut perpendicular to the surface, and one-half of each specimen was exposed to a demineralizing solution for another four weeks. The other half was set aside as a record of initial lesion depth and was used later in the determination of lesion progression. Lesion progression and infiltrant penetration were measured using confocal laser scanning microscopy (CLSM) and transverse microradiography (TMR). For lesion depth, based on CLSM, groups 2 and 3 showed the least changes when submitted to demineralization challenge, followed by group 1, then groups 5 and 6, and finally group 4. There were no significant differences between groups 2 and 3 or groups 5 and 6 in their ability to inhibit further lesion progression (p<0.05). Based on TMR, groups 2 and 3 also showed the fewest changes when submitted to demineralization challenge, followed by group 5, then groups 1 and 6, and finally group 4. In terms of mineral loss as measured by TMR, all groups that contained fluoride (groups 1, 3, and 6) show less percentage change in mineral loss than the groups that did not contain fluoride (groups 2, 4, and 5). It can be concluded that infiltrant penetration into early enamel lesions inhibited further demineralization in vitro, especially in the presence of fluoride. Saliva contamination decreased the ability of the infiltrant to prevent further demineralization, but the presence of fluoride seemed to counteract this effect.

Original languageEnglish (US)
Pages (from-to)481-488
Number of pages8
JournalOperative dentistry
Volume39
Issue number5
DOIs
StatePublished - Sep 1 2014

ASJC Scopus subject areas

  • Dentistry(all)

Fingerprint Dive into the research topics of 'In vitro progression of artificial white spot lesions sealed with an infiltrant resin'. Together they form a unique fingerprint.

  • Cite this