In vitro release of endogenous monoamines and amino acids from several CNS regions of the rat

W. J. McBride, R. S. Flint, M. T. Ciancone, J. M. Murphy

Research output: Contribution to journalArticle

14 Scopus citations


The in vitro release of endogenous norepinephrine (NE), dopamine (DA), serotonin (5-HT), GABA, glutamate (GLU), aspartate (ASP), glycine (GLY), taurine (TAU) and alanine (ALA) from superfused slices of cerebral cortex (CTX), striatum (STR), hippocampus (HIP), hypothalamus (HYPO), midbrain (MB), thalamus (THAL), nucleus accumbens (ACC), pons-medulla (PM) and spinal cord (SC) was studied. Under resting conditions or with 60 mM K+ in the absence of Ca2+, there was little or no release of NE, DA, 5-HT, GABA, GLU or ASP from any region. In most regions, there was a measurable resting release of ALA, GLY and TAU; of these three amino acids, only GLY in the PM and SC showed an increased release in the 60 mM K+ plus 2.5 mM Ca2+ medium. In 8 of the regions studied, the release of both GABA and GLU were stimulated by 60 mM K+ in the presence of 2.5 mM Ca2+. For the amino acids, no reliable data were obtained for release from the ACC because of its small size. The highest amount of K+-stimulated, Ca2+-dependent release of GABA was found with slices from the HYPO, THAL and MB while the highest amount of GLU was released from slices of STR, HIP and CTX. In those regions where reliable levels of K+-stimulated, Ca2+-dependent release of ASP were observed (STR, CTX, THAL), the amount of ASP was at least 5-fold lower than the values for GLU. A K+-stimulated, Ca2+-dependent release of NE, DA and 5-HT was observed for all 9 CNS regions studied. The highest release of (a) DA occurred from slices of CTX, STR and ACC; (b) NE was found in the HYPO and ACC; and (c) 5-HT occurred in the HYPO. The data (a) do not support a transmitter role for ALA and TAU in the CNS; (b) support a major transmitter function for GLY only in the PM and SC; and (c) support a transmitter role for GABA, GLU, NE, DA and 5-HT in the CNS regions examined (with the exception of GABA and GLU in the ACC where no data were obtained).

Original languageEnglish (US)
Pages (from-to)245-257
Number of pages13
JournalNeurochemical Research
Issue number2
StatePublished - Feb 1 1983


ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this