Incubation of whole blood at room temperature does not alter the plasma concentrations of microRNA-16 and -223

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Plasma-derived microRNAs (miRNAs) are being used as biomarkers, and have been associated with human liver disease and function including fibrosis, inflammation, and drug-induced liver injury. They may also be biomarkers of the drug metabolism function of the liver. In order for plasma miRNA to function as a clinical biomarker, predictable variability is necessary during processing from whole blood to plasma. The current study evaluated the variability of miRNA in whole blood stored for 0.5, 1, 2, 4, 8, and 12 hours following the blood draw under clinical conditions (room temperature) prior to the separation of the plasma. Four healthy volunteers were recruited. Blood from all subjects was collected twice. MicroRNA-16 (miR-16) and miR-223 were evaluated because many studies have shown them to be reliably present in plasma and useful for normalization. miRNA concentrations were measured by real-time polymerase chain reaction. The coefficient of variability of the cycle threshold values for subjects for miR-223 and miR-16 ranged from ∼3.6 to 6.8% and ∼1.48 to 4.1%, respectively, over the 12-hour incubation. A second blood collection was performed to determine interday variability. The coefficient of variance from the initial blood draw compared with the final blood draw for each subject ranged from 0.42 to 7.9% for miR-16 and 1.7 to 8.3% for miR-223, indicating that these miRNAs have limited interday variability. We conclude that plasma miR-16 or miR-223 concentrations are stable in whole blood at room temperature for up to 12 hours.

Original languageEnglish
Pages (from-to)1778-1781
Number of pages4
JournalDrug Metabolism and Disposition
Volume41
Issue number10
DOIs
StatePublished - Oct 2013

Fingerprint

MicroRNAs
Temperature
Biomarkers
Chemical and Drug Induced Liver Injury
Liver Diseases
Real-Time Polymerase Chain Reaction
Healthy Volunteers
Fibrosis
Inflammation
Liver
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Pharmacology
  • Pharmaceutical Science

Cite this

@article{c5627350248f4cdc988e78a30c7698b3,
title = "Incubation of whole blood at room temperature does not alter the plasma concentrations of microRNA-16 and -223",
abstract = "Plasma-derived microRNAs (miRNAs) are being used as biomarkers, and have been associated with human liver disease and function including fibrosis, inflammation, and drug-induced liver injury. They may also be biomarkers of the drug metabolism function of the liver. In order for plasma miRNA to function as a clinical biomarker, predictable variability is necessary during processing from whole blood to plasma. The current study evaluated the variability of miRNA in whole blood stored for 0.5, 1, 2, 4, 8, and 12 hours following the blood draw under clinical conditions (room temperature) prior to the separation of the plasma. Four healthy volunteers were recruited. Blood from all subjects was collected twice. MicroRNA-16 (miR-16) and miR-223 were evaluated because many studies have shown them to be reliably present in plasma and useful for normalization. miRNA concentrations were measured by real-time polymerase chain reaction. The coefficient of variability of the cycle threshold values for subjects for miR-223 and miR-16 ranged from ∼3.6 to 6.8{\%} and ∼1.48 to 4.1{\%}, respectively, over the 12-hour incubation. A second blood collection was performed to determine interday variability. The coefficient of variance from the initial blood draw compared with the final blood draw for each subject ranged from 0.42 to 7.9{\%} for miR-16 and 1.7 to 8.3{\%} for miR-223, indicating that these miRNAs have limited interday variability. We conclude that plasma miR-16 or miR-223 concentrations are stable in whole blood at room temperature for up to 12 hours.",
author = "Eric Benson and Todd Skaar",
year = "2013",
month = "10",
doi = "10.1124/dmd.113.052357",
language = "English",
volume = "41",
pages = "1778--1781",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "10",

}

TY - JOUR

T1 - Incubation of whole blood at room temperature does not alter the plasma concentrations of microRNA-16 and -223

AU - Benson, Eric

AU - Skaar, Todd

PY - 2013/10

Y1 - 2013/10

N2 - Plasma-derived microRNAs (miRNAs) are being used as biomarkers, and have been associated with human liver disease and function including fibrosis, inflammation, and drug-induced liver injury. They may also be biomarkers of the drug metabolism function of the liver. In order for plasma miRNA to function as a clinical biomarker, predictable variability is necessary during processing from whole blood to plasma. The current study evaluated the variability of miRNA in whole blood stored for 0.5, 1, 2, 4, 8, and 12 hours following the blood draw under clinical conditions (room temperature) prior to the separation of the plasma. Four healthy volunteers were recruited. Blood from all subjects was collected twice. MicroRNA-16 (miR-16) and miR-223 were evaluated because many studies have shown them to be reliably present in plasma and useful for normalization. miRNA concentrations were measured by real-time polymerase chain reaction. The coefficient of variability of the cycle threshold values for subjects for miR-223 and miR-16 ranged from ∼3.6 to 6.8% and ∼1.48 to 4.1%, respectively, over the 12-hour incubation. A second blood collection was performed to determine interday variability. The coefficient of variance from the initial blood draw compared with the final blood draw for each subject ranged from 0.42 to 7.9% for miR-16 and 1.7 to 8.3% for miR-223, indicating that these miRNAs have limited interday variability. We conclude that plasma miR-16 or miR-223 concentrations are stable in whole blood at room temperature for up to 12 hours.

AB - Plasma-derived microRNAs (miRNAs) are being used as biomarkers, and have been associated with human liver disease and function including fibrosis, inflammation, and drug-induced liver injury. They may also be biomarkers of the drug metabolism function of the liver. In order for plasma miRNA to function as a clinical biomarker, predictable variability is necessary during processing from whole blood to plasma. The current study evaluated the variability of miRNA in whole blood stored for 0.5, 1, 2, 4, 8, and 12 hours following the blood draw under clinical conditions (room temperature) prior to the separation of the plasma. Four healthy volunteers were recruited. Blood from all subjects was collected twice. MicroRNA-16 (miR-16) and miR-223 were evaluated because many studies have shown them to be reliably present in plasma and useful for normalization. miRNA concentrations were measured by real-time polymerase chain reaction. The coefficient of variability of the cycle threshold values for subjects for miR-223 and miR-16 ranged from ∼3.6 to 6.8% and ∼1.48 to 4.1%, respectively, over the 12-hour incubation. A second blood collection was performed to determine interday variability. The coefficient of variance from the initial blood draw compared with the final blood draw for each subject ranged from 0.42 to 7.9% for miR-16 and 1.7 to 8.3% for miR-223, indicating that these miRNAs have limited interday variability. We conclude that plasma miR-16 or miR-223 concentrations are stable in whole blood at room temperature for up to 12 hours.

UR - http://www.scopus.com/inward/record.url?scp=84884686668&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884686668&partnerID=8YFLogxK

U2 - 10.1124/dmd.113.052357

DO - 10.1124/dmd.113.052357

M3 - Article

C2 - 23886700

AN - SCOPUS:84884686668

VL - 41

SP - 1778

EP - 1781

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 10

ER -