Induction of UDP-glucuronosyltransferase activities in Gunn, heterozygous, and Wistar rat livers by pregnenolone-16α-carbonitrile

J. B. Watkins, C. D. Klaassen

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

The effect of pregnenolone-16α-carbonitrile (PCN) on UDP-glucuronosyltransferase (UDP-GT) activity was comprehensively examined in Wistar (JJ), heterozygous (Jj) and Gunn (jj) rats with eleven different acceptors for glucuronic acid. UDP-GT activity after 3-methylcholanthrene (3-MG) and phenobarbital (PB) treatment was studied in additional rats for comparative purposes. Conjugation of group-1 aglycones (1-naphthol and p-nitrophenol) was much lower in Gunn than in Wistar rats. PCN did not alter UDP-GT conjugation of these acceptors. UDP-GT activity toward group-1 aglycones was increased by 3-MC in Wistar and heterozygous rats but was not enhanced in Gunn rats by any inducer. Activity toward group-2 aglycones (morphine, chloramphenicol, valproic acid) was similar in control rats of all genotypes. PCN increased chloramphenicol conjugation, whereas PB enhanced the glucuronidation of all group-2 aglycones in Wistar, heterozygous, and Gunn rats. Conjugation of group-3 acceptors (bilirubin and digitoxigenin monodigitoxoside, DIG) was deficient in Gunn rats and was not inducible. PCN increased glucuronidation of bilirubin and DIG in Wistar and heterozygous rats. The concentration of UDP-glucuronic acid (UDPGA) in liver was similar in control animals of all genotypes and was increased in rats treated with 3-MC. The other inducers did not affect hepatic UDPGA levels. Thus, 3-MC, PB, and PCN induce UDP-GT activities toward different groups of acceptors of glucuronic acid. The results support the hypothesis that PCN induces a form of UDP-GT that preferentially conjugates the group-3 acceptors, bilirubin and DIG.

Original languageEnglish (US)
Pages (from-to)590-594
Number of pages5
JournalDrug Metabolism and Disposition
Volume10
Issue number6
StatePublished - 1982
Externally publishedYes

Fingerprint

Gunn Rats
Pregnenolone Carbonitrile
Glucuronosyltransferase
Liver
Wistar Rats
Rats
Phenobarbital
Bilirubin
Uridine Diphosphate Glucuronic Acid
Glucuronic Acid
Chloramphenicol
Genotype
Methylcholanthrene
Valproic Acid
Rat control
Morphine
16-pregnolone
Animals

ASJC Scopus subject areas

  • Pharmacology
  • Toxicology

Cite this

Induction of UDP-glucuronosyltransferase activities in Gunn, heterozygous, and Wistar rat livers by pregnenolone-16α-carbonitrile. / Watkins, J. B.; Klaassen, C. D.

In: Drug Metabolism and Disposition, Vol. 10, No. 6, 1982, p. 590-594.

Research output: Contribution to journalArticle

@article{dd8abeda9bf84244a47ccad13f4f8cd0,
title = "Induction of UDP-glucuronosyltransferase activities in Gunn, heterozygous, and Wistar rat livers by pregnenolone-16α-carbonitrile",
abstract = "The effect of pregnenolone-16α-carbonitrile (PCN) on UDP-glucuronosyltransferase (UDP-GT) activity was comprehensively examined in Wistar (JJ), heterozygous (Jj) and Gunn (jj) rats with eleven different acceptors for glucuronic acid. UDP-GT activity after 3-methylcholanthrene (3-MG) and phenobarbital (PB) treatment was studied in additional rats for comparative purposes. Conjugation of group-1 aglycones (1-naphthol and p-nitrophenol) was much lower in Gunn than in Wistar rats. PCN did not alter UDP-GT conjugation of these acceptors. UDP-GT activity toward group-1 aglycones was increased by 3-MC in Wistar and heterozygous rats but was not enhanced in Gunn rats by any inducer. Activity toward group-2 aglycones (morphine, chloramphenicol, valproic acid) was similar in control rats of all genotypes. PCN increased chloramphenicol conjugation, whereas PB enhanced the glucuronidation of all group-2 aglycones in Wistar, heterozygous, and Gunn rats. Conjugation of group-3 acceptors (bilirubin and digitoxigenin monodigitoxoside, DIG) was deficient in Gunn rats and was not inducible. PCN increased glucuronidation of bilirubin and DIG in Wistar and heterozygous rats. The concentration of UDP-glucuronic acid (UDPGA) in liver was similar in control animals of all genotypes and was increased in rats treated with 3-MC. The other inducers did not affect hepatic UDPGA levels. Thus, 3-MC, PB, and PCN induce UDP-GT activities toward different groups of acceptors of glucuronic acid. The results support the hypothesis that PCN induces a form of UDP-GT that preferentially conjugates the group-3 acceptors, bilirubin and DIG.",
author = "Watkins, {J. B.} and Klaassen, {C. D.}",
year = "1982",
language = "English (US)",
volume = "10",
pages = "590--594",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "6",

}

TY - JOUR

T1 - Induction of UDP-glucuronosyltransferase activities in Gunn, heterozygous, and Wistar rat livers by pregnenolone-16α-carbonitrile

AU - Watkins, J. B.

AU - Klaassen, C. D.

PY - 1982

Y1 - 1982

N2 - The effect of pregnenolone-16α-carbonitrile (PCN) on UDP-glucuronosyltransferase (UDP-GT) activity was comprehensively examined in Wistar (JJ), heterozygous (Jj) and Gunn (jj) rats with eleven different acceptors for glucuronic acid. UDP-GT activity after 3-methylcholanthrene (3-MG) and phenobarbital (PB) treatment was studied in additional rats for comparative purposes. Conjugation of group-1 aglycones (1-naphthol and p-nitrophenol) was much lower in Gunn than in Wistar rats. PCN did not alter UDP-GT conjugation of these acceptors. UDP-GT activity toward group-1 aglycones was increased by 3-MC in Wistar and heterozygous rats but was not enhanced in Gunn rats by any inducer. Activity toward group-2 aglycones (morphine, chloramphenicol, valproic acid) was similar in control rats of all genotypes. PCN increased chloramphenicol conjugation, whereas PB enhanced the glucuronidation of all group-2 aglycones in Wistar, heterozygous, and Gunn rats. Conjugation of group-3 acceptors (bilirubin and digitoxigenin monodigitoxoside, DIG) was deficient in Gunn rats and was not inducible. PCN increased glucuronidation of bilirubin and DIG in Wistar and heterozygous rats. The concentration of UDP-glucuronic acid (UDPGA) in liver was similar in control animals of all genotypes and was increased in rats treated with 3-MC. The other inducers did not affect hepatic UDPGA levels. Thus, 3-MC, PB, and PCN induce UDP-GT activities toward different groups of acceptors of glucuronic acid. The results support the hypothesis that PCN induces a form of UDP-GT that preferentially conjugates the group-3 acceptors, bilirubin and DIG.

AB - The effect of pregnenolone-16α-carbonitrile (PCN) on UDP-glucuronosyltransferase (UDP-GT) activity was comprehensively examined in Wistar (JJ), heterozygous (Jj) and Gunn (jj) rats with eleven different acceptors for glucuronic acid. UDP-GT activity after 3-methylcholanthrene (3-MG) and phenobarbital (PB) treatment was studied in additional rats for comparative purposes. Conjugation of group-1 aglycones (1-naphthol and p-nitrophenol) was much lower in Gunn than in Wistar rats. PCN did not alter UDP-GT conjugation of these acceptors. UDP-GT activity toward group-1 aglycones was increased by 3-MC in Wistar and heterozygous rats but was not enhanced in Gunn rats by any inducer. Activity toward group-2 aglycones (morphine, chloramphenicol, valproic acid) was similar in control rats of all genotypes. PCN increased chloramphenicol conjugation, whereas PB enhanced the glucuronidation of all group-2 aglycones in Wistar, heterozygous, and Gunn rats. Conjugation of group-3 acceptors (bilirubin and digitoxigenin monodigitoxoside, DIG) was deficient in Gunn rats and was not inducible. PCN increased glucuronidation of bilirubin and DIG in Wistar and heterozygous rats. The concentration of UDP-glucuronic acid (UDPGA) in liver was similar in control animals of all genotypes and was increased in rats treated with 3-MC. The other inducers did not affect hepatic UDPGA levels. Thus, 3-MC, PB, and PCN induce UDP-GT activities toward different groups of acceptors of glucuronic acid. The results support the hypothesis that PCN induces a form of UDP-GT that preferentially conjugates the group-3 acceptors, bilirubin and DIG.

UR - http://www.scopus.com/inward/record.url?scp=0020431254&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020431254&partnerID=8YFLogxK

M3 - Article

VL - 10

SP - 590

EP - 594

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 6

ER -