Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure

Kalpana Ghoshal, Jharna Datta, Sarmila Majumder, Shoumei Bai, X. Dong, Mark Parthun, Samson T. Jacob

Research output: Contribution to journalArticle

134 Citations (Scopus)

Abstract

Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.

Original languageEnglish (US)
Pages (from-to)8302-8319
Number of pages18
JournalMolecular and Cellular Biology
Volume22
Issue number23
DOIs
StatePublished - Dec 2002
Externally publishedYes

Fingerprint

Activating Transcription Factors
Histone Deacetylase Inhibitors
Metallothionein
Methyltransferases
Azacitidine
trichostatin A
Chromatin
Transcription Factors
Metals
DNA
Genes
Histone Deacetylases
Histones
Non-Hodgkin's Lymphoma
Chromatin Immunoprecipitation
Methyl-CpG-Binding Protein 2
Histone Deacetylase 1
Depsipeptides
Restriction Mapping
Response Elements

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. / Ghoshal, Kalpana; Datta, Jharna; Majumder, Sarmila; Bai, Shoumei; Dong, X.; Parthun, Mark; Jacob, Samson T.

In: Molecular and Cellular Biology, Vol. 22, No. 23, 12.2002, p. 8302-8319.

Research output: Contribution to journalArticle

@article{482b9f5133fd4634b651591dbe8fd4e4,
title = "Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure",
abstract = "Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.",
author = "Kalpana Ghoshal and Jharna Datta and Sarmila Majumder and Shoumei Bai and X. Dong and Mark Parthun and Jacob, {Samson T.}",
year = "2002",
month = "12",
doi = "10.1128/MCB.22.23.8302-8319.2002",
language = "English (US)",
volume = "22",
pages = "8302--8319",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "23",

}

TY - JOUR

T1 - Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure

AU - Ghoshal, Kalpana

AU - Datta, Jharna

AU - Majumder, Sarmila

AU - Bai, Shoumei

AU - Dong, X.

AU - Parthun, Mark

AU - Jacob, Samson T.

PY - 2002/12

Y1 - 2002/12

N2 - Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.

AB - Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.

UR - http://www.scopus.com/inward/record.url?scp=0036889153&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036889153&partnerID=8YFLogxK

U2 - 10.1128/MCB.22.23.8302-8319.2002

DO - 10.1128/MCB.22.23.8302-8319.2002

M3 - Article

C2 - 12417732

AN - SCOPUS:0036889153

VL - 22

SP - 8302

EP - 8319

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 23

ER -