Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension

Suellen D.S. Oliveira, Jiwang Chen, Maricela Castellon, Mao Mao, J. Usha Raj, Suzy Comhair, Serpil Erzurum, Claudia L.M. Silva, Roberto Machado, Marcelo G. Bonini, Richard D. Minshall

Research output: Contribution to journalArticle

Abstract

Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.

Original languageEnglish (US)
Pages (from-to)1191-1202
Number of pages12
JournalArteriosclerosis, thrombosis, and vascular biology
Volume39
Issue number6
DOIs
StatePublished - Jun 1 2019
Externally publishedYes

Fingerprint

Caveolin 1
Transforming Growth Factors
Pulmonary Hypertension
Endothelial Cells
Wounds and Injuries
Lung
Extracellular Vesicles
Type II Bone Morphogenetic Protein Receptors
Macrophages
Vascular Endothelial Growth Factor Receptor
Vascular System Injuries
Ventricular Pressure
Vascular Diseases
Nitric Oxide Synthase
Lung Diseases
Sprague Dawley Rats

Keywords

  • caveolin 1
  • endothelial cells
  • extracellular vesicles
  • inflammation
  • TGF-β

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Cite this

Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension. / Oliveira, Suellen D.S.; Chen, Jiwang; Castellon, Maricela; Mao, Mao; Raj, J. Usha; Comhair, Suzy; Erzurum, Serpil; Silva, Claudia L.M.; Machado, Roberto; Bonini, Marcelo G.; Minshall, Richard D.

In: Arteriosclerosis, thrombosis, and vascular biology, Vol. 39, No. 6, 01.06.2019, p. 1191-1202.

Research output: Contribution to journalArticle

Oliveira, Suellen D.S. ; Chen, Jiwang ; Castellon, Maricela ; Mao, Mao ; Raj, J. Usha ; Comhair, Suzy ; Erzurum, Serpil ; Silva, Claudia L.M. ; Machado, Roberto ; Bonini, Marcelo G. ; Minshall, Richard D. / Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension. In: Arteriosclerosis, thrombosis, and vascular biology. 2019 ; Vol. 39, No. 6. pp. 1191-1202.
@article{13ae3169ca6242f19ad22a654d4765dd,
title = "Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension",
abstract = "Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.",
keywords = "caveolin 1, endothelial cells, extracellular vesicles, inflammation, TGF-β",
author = "Oliveira, {Suellen D.S.} and Jiwang Chen and Maricela Castellon and Mao Mao and Raj, {J. Usha} and Suzy Comhair and Serpil Erzurum and Silva, {Claudia L.M.} and Roberto Machado and Bonini, {Marcelo G.} and Minshall, {Richard D.}",
year = "2019",
month = "6",
day = "1",
doi = "10.1161/ATVBAHA.118.312038",
language = "English (US)",
volume = "39",
pages = "1191--1202",
journal = "Arteriosclerosis, Thrombosis, and Vascular Biology",
issn = "1079-5642",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension

AU - Oliveira, Suellen D.S.

AU - Chen, Jiwang

AU - Castellon, Maricela

AU - Mao, Mao

AU - Raj, J. Usha

AU - Comhair, Suzy

AU - Erzurum, Serpil

AU - Silva, Claudia L.M.

AU - Machado, Roberto

AU - Bonini, Marcelo G.

AU - Minshall, Richard D.

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.

AB - Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.

KW - caveolin 1

KW - endothelial cells

KW - extracellular vesicles

KW - inflammation

KW - TGF-β

UR - http://www.scopus.com/inward/record.url?scp=85066511992&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066511992&partnerID=8YFLogxK

U2 - 10.1161/ATVBAHA.118.312038

DO - 10.1161/ATVBAHA.118.312038

M3 - Article

VL - 39

SP - 1191

EP - 1202

JO - Arteriosclerosis, Thrombosis, and Vascular Biology

JF - Arteriosclerosis, Thrombosis, and Vascular Biology

SN - 1079-5642

IS - 6

ER -