Is hydrogen sulfide a circulating "gasotransmitter" in vertebrate blood?

Research output: Contribution to journalArticle

173 Citations (Scopus)

Abstract

Hydrogen sulfide (H2S) is gaining acceptance as a signaling molecule and has been shown to elicit a variety of biological effects at concentrations between 10 and 1000 μmol/l. Dissolved H2S is a weak acid in equilibrium with HS- and S2- and under physiological conditions these species, collectively referred to as sulfide, exist in the approximate ratio of 20% H2S, 80% HS- and 0% S2-. Numerous analyses over the past 8 years have reported plasma or blood sulfide concentrations also in this range, typically between 30 and 300 μmol/l, thus supporting the biological studies. However, there is some question whether or not these concentrations are physiological. First, many of these values have been obtained from indirect methods using relatively harsh chemical conditions. Second, most studies conducted prior to 2000 failed to find blood sulfide in micromolar concentrations while others showed that radiolabeled 35S-sulfide is rapidly removed from blood and that mammals have a relatively high capacity to metabolize exogenously administered sulfide. Very recent studies using H2S gas-sensing electrodes to directly measure sulfide in plasma or blood, or HPLC analysis of head-space gas, have also indicated that sulfide does not circulate at micromolar levels and is rapidly consumed by blood or tissues. Third, micromolar concentrations of sulfide in blood or exhaled air should be, but are not, malodorous. Fourth, estimates of dietary sulfur necessary to sustain micromolar levels of plasma sulfide greatly exceed the daily intake. Collectively, these studies imply that many of the biological effects of sulfide are only achieved at supra-physiological concentrations and they question whether circulating sulfide is a physiologically relevant signaling molecule. This review examines the blood/plasma sulfide measurements that have been reported over the past 30 years from the perspective of the analytical methods used and the potential sources of error.

Original languageEnglish
Pages (from-to)856-863
Number of pages8
JournalBiochimica et Biophysica Acta - Bioenergetics
Volume1787
Issue number7
DOIs
StatePublished - Jul 2009

Fingerprint

Gasotransmitters
Hydrogen Sulfide
Sulfides
Vertebrates
Blood
Plasmas
Gas sensing electrodes
Gases
Molecules
Mammals
Sulfur

Keywords

  • Acid-labile sulfur
  • Cardiovascular signaling
  • Sulfane sulfur

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Cell Biology

Cite this

Is hydrogen sulfide a circulating "gasotransmitter" in vertebrate blood? / Olson, Kenneth.

In: Biochimica et Biophysica Acta - Bioenergetics, Vol. 1787, No. 7, 07.2009, p. 856-863.

Research output: Contribution to journalArticle

@article{df8e91b0234d455899bb9de90f60e80b,
title = "Is hydrogen sulfide a circulating {"}gasotransmitter{"} in vertebrate blood?",
abstract = "Hydrogen sulfide (H2S) is gaining acceptance as a signaling molecule and has been shown to elicit a variety of biological effects at concentrations between 10 and 1000 μmol/l. Dissolved H2S is a weak acid in equilibrium with HS- and S2- and under physiological conditions these species, collectively referred to as sulfide, exist in the approximate ratio of 20{\%} H2S, 80{\%} HS- and 0{\%} S2-. Numerous analyses over the past 8 years have reported plasma or blood sulfide concentrations also in this range, typically between 30 and 300 μmol/l, thus supporting the biological studies. However, there is some question whether or not these concentrations are physiological. First, many of these values have been obtained from indirect methods using relatively harsh chemical conditions. Second, most studies conducted prior to 2000 failed to find blood sulfide in micromolar concentrations while others showed that radiolabeled 35S-sulfide is rapidly removed from blood and that mammals have a relatively high capacity to metabolize exogenously administered sulfide. Very recent studies using H2S gas-sensing electrodes to directly measure sulfide in plasma or blood, or HPLC analysis of head-space gas, have also indicated that sulfide does not circulate at micromolar levels and is rapidly consumed by blood or tissues. Third, micromolar concentrations of sulfide in blood or exhaled air should be, but are not, malodorous. Fourth, estimates of dietary sulfur necessary to sustain micromolar levels of plasma sulfide greatly exceed the daily intake. Collectively, these studies imply that many of the biological effects of sulfide are only achieved at supra-physiological concentrations and they question whether circulating sulfide is a physiologically relevant signaling molecule. This review examines the blood/plasma sulfide measurements that have been reported over the past 30 years from the perspective of the analytical methods used and the potential sources of error.",
keywords = "Acid-labile sulfur, Cardiovascular signaling, Sulfane sulfur",
author = "Kenneth Olson",
year = "2009",
month = "7",
doi = "10.1016/j.bbabio.2009.03.019",
language = "English",
volume = "1787",
pages = "856--863",
journal = "Biochimica et Biophysica Acta - Bioenergetics",
issn = "0005-2728",
publisher = "Elsevier",
number = "7",

}

TY - JOUR

T1 - Is hydrogen sulfide a circulating "gasotransmitter" in vertebrate blood?

AU - Olson, Kenneth

PY - 2009/7

Y1 - 2009/7

N2 - Hydrogen sulfide (H2S) is gaining acceptance as a signaling molecule and has been shown to elicit a variety of biological effects at concentrations between 10 and 1000 μmol/l. Dissolved H2S is a weak acid in equilibrium with HS- and S2- and under physiological conditions these species, collectively referred to as sulfide, exist in the approximate ratio of 20% H2S, 80% HS- and 0% S2-. Numerous analyses over the past 8 years have reported plasma or blood sulfide concentrations also in this range, typically between 30 and 300 μmol/l, thus supporting the biological studies. However, there is some question whether or not these concentrations are physiological. First, many of these values have been obtained from indirect methods using relatively harsh chemical conditions. Second, most studies conducted prior to 2000 failed to find blood sulfide in micromolar concentrations while others showed that radiolabeled 35S-sulfide is rapidly removed from blood and that mammals have a relatively high capacity to metabolize exogenously administered sulfide. Very recent studies using H2S gas-sensing electrodes to directly measure sulfide in plasma or blood, or HPLC analysis of head-space gas, have also indicated that sulfide does not circulate at micromolar levels and is rapidly consumed by blood or tissues. Third, micromolar concentrations of sulfide in blood or exhaled air should be, but are not, malodorous. Fourth, estimates of dietary sulfur necessary to sustain micromolar levels of plasma sulfide greatly exceed the daily intake. Collectively, these studies imply that many of the biological effects of sulfide are only achieved at supra-physiological concentrations and they question whether circulating sulfide is a physiologically relevant signaling molecule. This review examines the blood/plasma sulfide measurements that have been reported over the past 30 years from the perspective of the analytical methods used and the potential sources of error.

AB - Hydrogen sulfide (H2S) is gaining acceptance as a signaling molecule and has been shown to elicit a variety of biological effects at concentrations between 10 and 1000 μmol/l. Dissolved H2S is a weak acid in equilibrium with HS- and S2- and under physiological conditions these species, collectively referred to as sulfide, exist in the approximate ratio of 20% H2S, 80% HS- and 0% S2-. Numerous analyses over the past 8 years have reported plasma or blood sulfide concentrations also in this range, typically between 30 and 300 μmol/l, thus supporting the biological studies. However, there is some question whether or not these concentrations are physiological. First, many of these values have been obtained from indirect methods using relatively harsh chemical conditions. Second, most studies conducted prior to 2000 failed to find blood sulfide in micromolar concentrations while others showed that radiolabeled 35S-sulfide is rapidly removed from blood and that mammals have a relatively high capacity to metabolize exogenously administered sulfide. Very recent studies using H2S gas-sensing electrodes to directly measure sulfide in plasma or blood, or HPLC analysis of head-space gas, have also indicated that sulfide does not circulate at micromolar levels and is rapidly consumed by blood or tissues. Third, micromolar concentrations of sulfide in blood or exhaled air should be, but are not, malodorous. Fourth, estimates of dietary sulfur necessary to sustain micromolar levels of plasma sulfide greatly exceed the daily intake. Collectively, these studies imply that many of the biological effects of sulfide are only achieved at supra-physiological concentrations and they question whether circulating sulfide is a physiologically relevant signaling molecule. This review examines the blood/plasma sulfide measurements that have been reported over the past 30 years from the perspective of the analytical methods used and the potential sources of error.

KW - Acid-labile sulfur

KW - Cardiovascular signaling

KW - Sulfane sulfur

UR - http://www.scopus.com/inward/record.url?scp=67649265267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649265267&partnerID=8YFLogxK

U2 - 10.1016/j.bbabio.2009.03.019

DO - 10.1016/j.bbabio.2009.03.019

M3 - Article

C2 - 19361483

AN - SCOPUS:67649265267

VL - 1787

SP - 856

EP - 863

JO - Biochimica et Biophysica Acta - Bioenergetics

JF - Biochimica et Biophysica Acta - Bioenergetics

SN - 0005-2728

IS - 7

ER -