Joint high-order multi-task feature learning to predict the progression of Alzheimer’s disease

ADNI

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Alzheimer’s disease (AD) is a degenerative brain disease that affects millions of people around the world. As populations in the United States and worldwide age, the prevalence of Alzheimer’s disease will only increase. In turn, the social and financial costs of AD will create a difficult environment for many families and caregivers across the globe. By combining genetic information, brain scans, and clinical data, gathered over time through the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we propose a new Joint High-Order Multi-Modal Multi-Task Feature Learning method to predict the cognitive performance and diagnosis of patients with and without AD.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages555-562
Number of pages8
ISBN (Print)9783030009274
DOIs
StatePublished - Jan 1 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 20 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period9/16/189/20/18

Keywords

  • Alzheimer’s disease
  • Longitudinal
  • Multi-modal
  • Tensor

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Joint high-order multi-task feature learning to predict the progression of Alzheimer’s disease'. Together they form a unique fingerprint.

Cite this