Lung microbiome in human immunodeficiency virus infection

Homer Twigg, George M. Weinstock, Kenneth S. Knox

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

The lung microbiome plays a significant role in normal lung function and disease. Because microbial colonization is likely influenced by immunodeficiency, one would speculate that infection with human immunodeficiency virus (HIV) alters the lung microbiome. Furthermore, how this alteration might impact pulmonary complications now seen in HIV-infected patients on antiretroviral therapy (ART), which has shifted from opportunistic infections to diseases associated with chronic inflammation, is not known. There have been limited publications on the lung microbiome in HIV infection, many of them emanating from the Lung HIV Microbiome Project. Current evidence suggests that the lung microbiome in healthy HIV-infected individuals with preserved CD4 counts is similar to uninfected individuals. However, in individuals with more advanced disease, there is an altered alveolar microbiome characterized by a loss of richness and evenness (alpha diversity) within individuals. Furthermore, as a group the taxa making up the HIV-infected and uninfected lung microbiome are different (differences in beta diversity), and the HIV-infected population is more spread out (greater dispersion) than the uninfected population. These differences decline with ART, but even after effective therapy the alveolar microbiome in HIV-infected individuals contains increased amounts of signature bacteria, some of which have previously been associated with chronic lung inflammation. Furthermore, more recent investigations into the lung virome in HIV infection suggest that perturbations in lung viral communities also exist in HIV infection, and that these too are associated with evidence of lung inflammation. Thus, it is likely both microbiome and virome alterations in HIV infection contribute to lung inflammation in these individuals, which has important implications on the changing spectrum of pulmonary complications in patients living with HIV.

Original languageEnglish (US)
JournalTranslational Research
DOIs
StateAccepted/In press - Apr 25 2016

Fingerprint

Microbiota
Virus Diseases
Viruses
HIV
Lung
Pneumonia
Opportunistic Infections
CD4 Lymphocyte Count
Population
Lung Diseases
Publications
Bacteria
Therapeutics
Inflammation

ASJC Scopus subject areas

  • Medicine(all)
  • Public Health, Environmental and Occupational Health
  • Biochemistry, medical

Cite this

Lung microbiome in human immunodeficiency virus infection. / Twigg, Homer; Weinstock, George M.; Knox, Kenneth S.

In: Translational Research, 25.04.2016.

Research output: Contribution to journalArticle

@article{16ad58c0260a416a963216b4c161ca75,
title = "Lung microbiome in human immunodeficiency virus infection",
abstract = "The lung microbiome plays a significant role in normal lung function and disease. Because microbial colonization is likely influenced by immunodeficiency, one would speculate that infection with human immunodeficiency virus (HIV) alters the lung microbiome. Furthermore, how this alteration might impact pulmonary complications now seen in HIV-infected patients on antiretroviral therapy (ART), which has shifted from opportunistic infections to diseases associated with chronic inflammation, is not known. There have been limited publications on the lung microbiome in HIV infection, many of them emanating from the Lung HIV Microbiome Project. Current evidence suggests that the lung microbiome in healthy HIV-infected individuals with preserved CD4 counts is similar to uninfected individuals. However, in individuals with more advanced disease, there is an altered alveolar microbiome characterized by a loss of richness and evenness (alpha diversity) within individuals. Furthermore, as a group the taxa making up the HIV-infected and uninfected lung microbiome are different (differences in beta diversity), and the HIV-infected population is more spread out (greater dispersion) than the uninfected population. These differences decline with ART, but even after effective therapy the alveolar microbiome in HIV-infected individuals contains increased amounts of signature bacteria, some of which have previously been associated with chronic lung inflammation. Furthermore, more recent investigations into the lung virome in HIV infection suggest that perturbations in lung viral communities also exist in HIV infection, and that these too are associated with evidence of lung inflammation. Thus, it is likely both microbiome and virome alterations in HIV infection contribute to lung inflammation in these individuals, which has important implications on the changing spectrum of pulmonary complications in patients living with HIV.",
author = "Homer Twigg and Weinstock, {George M.} and Knox, {Kenneth S.}",
year = "2016",
month = "4",
day = "25",
doi = "10.1016/j.trsl.2016.07.008",
language = "English (US)",
journal = "Translational Research",
issn = "1931-5244",
publisher = "Mosby Inc.",

}

TY - JOUR

T1 - Lung microbiome in human immunodeficiency virus infection

AU - Twigg, Homer

AU - Weinstock, George M.

AU - Knox, Kenneth S.

PY - 2016/4/25

Y1 - 2016/4/25

N2 - The lung microbiome plays a significant role in normal lung function and disease. Because microbial colonization is likely influenced by immunodeficiency, one would speculate that infection with human immunodeficiency virus (HIV) alters the lung microbiome. Furthermore, how this alteration might impact pulmonary complications now seen in HIV-infected patients on antiretroviral therapy (ART), which has shifted from opportunistic infections to diseases associated with chronic inflammation, is not known. There have been limited publications on the lung microbiome in HIV infection, many of them emanating from the Lung HIV Microbiome Project. Current evidence suggests that the lung microbiome in healthy HIV-infected individuals with preserved CD4 counts is similar to uninfected individuals. However, in individuals with more advanced disease, there is an altered alveolar microbiome characterized by a loss of richness and evenness (alpha diversity) within individuals. Furthermore, as a group the taxa making up the HIV-infected and uninfected lung microbiome are different (differences in beta diversity), and the HIV-infected population is more spread out (greater dispersion) than the uninfected population. These differences decline with ART, but even after effective therapy the alveolar microbiome in HIV-infected individuals contains increased amounts of signature bacteria, some of which have previously been associated with chronic lung inflammation. Furthermore, more recent investigations into the lung virome in HIV infection suggest that perturbations in lung viral communities also exist in HIV infection, and that these too are associated with evidence of lung inflammation. Thus, it is likely both microbiome and virome alterations in HIV infection contribute to lung inflammation in these individuals, which has important implications on the changing spectrum of pulmonary complications in patients living with HIV.

AB - The lung microbiome plays a significant role in normal lung function and disease. Because microbial colonization is likely influenced by immunodeficiency, one would speculate that infection with human immunodeficiency virus (HIV) alters the lung microbiome. Furthermore, how this alteration might impact pulmonary complications now seen in HIV-infected patients on antiretroviral therapy (ART), which has shifted from opportunistic infections to diseases associated with chronic inflammation, is not known. There have been limited publications on the lung microbiome in HIV infection, many of them emanating from the Lung HIV Microbiome Project. Current evidence suggests that the lung microbiome in healthy HIV-infected individuals with preserved CD4 counts is similar to uninfected individuals. However, in individuals with more advanced disease, there is an altered alveolar microbiome characterized by a loss of richness and evenness (alpha diversity) within individuals. Furthermore, as a group the taxa making up the HIV-infected and uninfected lung microbiome are different (differences in beta diversity), and the HIV-infected population is more spread out (greater dispersion) than the uninfected population. These differences decline with ART, but even after effective therapy the alveolar microbiome in HIV-infected individuals contains increased amounts of signature bacteria, some of which have previously been associated with chronic lung inflammation. Furthermore, more recent investigations into the lung virome in HIV infection suggest that perturbations in lung viral communities also exist in HIV infection, and that these too are associated with evidence of lung inflammation. Thus, it is likely both microbiome and virome alterations in HIV infection contribute to lung inflammation in these individuals, which has important implications on the changing spectrum of pulmonary complications in patients living with HIV.

UR - http://www.scopus.com/inward/record.url?scp=84994376705&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84994376705&partnerID=8YFLogxK

U2 - 10.1016/j.trsl.2016.07.008

DO - 10.1016/j.trsl.2016.07.008

M3 - Article

JO - Translational Research

JF - Translational Research

SN - 1931-5244

ER -