Mammalian PGRPs: Novel antibacterial proteins

Research output: Contribution to journalArticle

76 Citations (Scopus)

Abstract

Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules conserved from insects to mammals. Insects have up to 19 PGRPs, which activate Toll or Imd signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyse peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which were hypothesized to function as signal-transducing pattern recognition receptors. However, all mammalian PGRPs are secreted, usually as disulphide-linked homo- and heterodimers. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyses bacterial peptidoglycan and reduces its proinflammatory activity. PGLYRP-2 is secreted from liver into blood, and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal or bacteriostatic proteins. PGLYRP-1 is expressed primarily in the granules of polymorphonuclear leucocytes (PMNs), and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine, and protect the host against infections. They kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. These PGRPs therefore are a new class of bactericidal and bacteriostatic proteins that have different structure, mechanism of action, and expression pattern from currently known vertebrate antimicrobial peptides. Direct bactericidal activity of these PGRPs either evolved in vertebrates or mammals, or it is yet to be discovered in insects.

Original languageEnglish
Pages (from-to)1059-1069
Number of pages11
JournalCellular Microbiology
Volume8
Issue number7
DOIs
StatePublished - Jul 2006

Fingerprint

Mammals
Insects
Peptidoglycan
Proteins
Vertebrates
Bacteria
N-Acetylmuramoyl-L-alanine Amidase
Pattern Recognition Receptors
Signal transduction
peptidoglycan recognition protein
Pharynx
Infection
Salivary Glands
Phagocytosis
Tongue
Innate Immunity
Disulfides
Liver
Cell Wall
Esophagus

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Microbiology

Cite this

Mammalian PGRPs : Novel antibacterial proteins. / Dziarski, Roman; Gupta, Dipika.

In: Cellular Microbiology, Vol. 8, No. 7, 07.2006, p. 1059-1069.

Research output: Contribution to journalArticle

@article{e78c306bbfa541db955b14003b6dc6c2,
title = "Mammalian PGRPs: Novel antibacterial proteins",
abstract = "Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules conserved from insects to mammals. Insects have up to 19 PGRPs, which activate Toll or Imd signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyse peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which were hypothesized to function as signal-transducing pattern recognition receptors. However, all mammalian PGRPs are secreted, usually as disulphide-linked homo- and heterodimers. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyses bacterial peptidoglycan and reduces its proinflammatory activity. PGLYRP-2 is secreted from liver into blood, and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal or bacteriostatic proteins. PGLYRP-1 is expressed primarily in the granules of polymorphonuclear leucocytes (PMNs), and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine, and protect the host against infections. They kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. These PGRPs therefore are a new class of bactericidal and bacteriostatic proteins that have different structure, mechanism of action, and expression pattern from currently known vertebrate antimicrobial peptides. Direct bactericidal activity of these PGRPs either evolved in vertebrates or mammals, or it is yet to be discovered in insects.",
author = "Roman Dziarski and Dipika Gupta",
year = "2006",
month = "7",
doi = "10.1111/j.1462-5822.2006.00726.x",
language = "English",
volume = "8",
pages = "1059--1069",
journal = "Cellular Microbiology",
issn = "1462-5814",
publisher = "Wiley-Blackwell",
number = "7",

}

TY - JOUR

T1 - Mammalian PGRPs

T2 - Novel antibacterial proteins

AU - Dziarski, Roman

AU - Gupta, Dipika

PY - 2006/7

Y1 - 2006/7

N2 - Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules conserved from insects to mammals. Insects have up to 19 PGRPs, which activate Toll or Imd signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyse peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which were hypothesized to function as signal-transducing pattern recognition receptors. However, all mammalian PGRPs are secreted, usually as disulphide-linked homo- and heterodimers. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyses bacterial peptidoglycan and reduces its proinflammatory activity. PGLYRP-2 is secreted from liver into blood, and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal or bacteriostatic proteins. PGLYRP-1 is expressed primarily in the granules of polymorphonuclear leucocytes (PMNs), and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine, and protect the host against infections. They kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. These PGRPs therefore are a new class of bactericidal and bacteriostatic proteins that have different structure, mechanism of action, and expression pattern from currently known vertebrate antimicrobial peptides. Direct bactericidal activity of these PGRPs either evolved in vertebrates or mammals, or it is yet to be discovered in insects.

AB - Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules conserved from insects to mammals. Insects have up to 19 PGRPs, which activate Toll or Imd signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyse peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which were hypothesized to function as signal-transducing pattern recognition receptors. However, all mammalian PGRPs are secreted, usually as disulphide-linked homo- and heterodimers. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyses bacterial peptidoglycan and reduces its proinflammatory activity. PGLYRP-2 is secreted from liver into blood, and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal or bacteriostatic proteins. PGLYRP-1 is expressed primarily in the granules of polymorphonuclear leucocytes (PMNs), and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine, and protect the host against infections. They kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. These PGRPs therefore are a new class of bactericidal and bacteriostatic proteins that have different structure, mechanism of action, and expression pattern from currently known vertebrate antimicrobial peptides. Direct bactericidal activity of these PGRPs either evolved in vertebrates or mammals, or it is yet to be discovered in insects.

UR - http://www.scopus.com/inward/record.url?scp=33745013863&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745013863&partnerID=8YFLogxK

U2 - 10.1111/j.1462-5822.2006.00726.x

DO - 10.1111/j.1462-5822.2006.00726.x

M3 - Article

C2 - 16819960

AN - SCOPUS:33745013863

VL - 8

SP - 1059

EP - 1069

JO - Cellular Microbiology

JF - Cellular Microbiology

SN - 1462-5814

IS - 7

ER -