Mechanical loading of diaphyseal bone in vivo

The strain threshold for an osteogenic response varies with location

Y. F. Hsieh, Alexander Robling, W. T. Ambrosius, David Burr, C. H. Turner

Research output: Contribution to journalArticle

169 Citations (Scopus)

Abstract

Bone tissue responds to elevated mechanical loading with increased bone formation, which is triggered either directly or indirectly by the mechanical strain engendered in the bone tissue. Previous studies have shown that mechanical strain magnitude must surpass a threshold before bone formation is initiated. The objective of this study was to estimate the strain thresholds at three different locations along the ulna of adult rats. We hypothesized that the strain threshold would be greater in regions of the ulna habitually subjected to larger mechanical strains. New bone formation was measured on the periosteal and endocortical surfaces of the ulnar diaphysis in adult female rats exposed to controlled dynamic loading. Axial, compressive loading was applied daily at five different magnitudes for a period of 2 weeks. Bone formation rate (BFR) was measured, using double-label histomorphometry at the ulnar middiaphysis and at locations 3 mm proximal and 3 mm distal to the middiaphysis. Loading induced lamellar bone formation on the periosteal surface that was greater at the distal ulnar location and lower at the proximal location when compared with the middiaphysis. Likewise, peak strains on the periosteal surface were greatest distally and less proximally. There was a significant dose-response relationship between peak strain magnitude and periosteal new bone formation when the mechanically induced strain surpassed a threshold. The strain threshold varied from 1343 microstrain (μstrain) proximally to 2284 μstrain at the midshaft to 3074 μstrain distally. Unlike the periosteal response to mechanical loading, there was not a clear dose-response relationship between applied load and bone formation on the endocortical surface. Endocortical strains were estimated to be <20% of periosteal strains and may not have been sufficient to initiate a bone formation response. Our results show that the osteogenic response on the periosteal surface of the ulna depends on peak strain level once a strain threshold is surpassed. The threshold strain is largest distally, where locomotor bone strains are typically higher and smallest proximally where locomotor bone strains are lower.

Original languageEnglish
Pages (from-to)2291-2297
Number of pages7
JournalJournal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Volume16
Issue number12
StatePublished - 2001

Fingerprint

Osteogenesis
Bone and Bones
Ulna
Diaphyses
Weight-Bearing

Keywords

  • Adaptation
  • Mechanotransduction
  • Rat
  • Ulna

ASJC Scopus subject areas

  • Surgery

Cite this

@article{38afae634be646c29b592ea8e1d18d55,
title = "Mechanical loading of diaphyseal bone in vivo: The strain threshold for an osteogenic response varies with location",
abstract = "Bone tissue responds to elevated mechanical loading with increased bone formation, which is triggered either directly or indirectly by the mechanical strain engendered in the bone tissue. Previous studies have shown that mechanical strain magnitude must surpass a threshold before bone formation is initiated. The objective of this study was to estimate the strain thresholds at three different locations along the ulna of adult rats. We hypothesized that the strain threshold would be greater in regions of the ulna habitually subjected to larger mechanical strains. New bone formation was measured on the periosteal and endocortical surfaces of the ulnar diaphysis in adult female rats exposed to controlled dynamic loading. Axial, compressive loading was applied daily at five different magnitudes for a period of 2 weeks. Bone formation rate (BFR) was measured, using double-label histomorphometry at the ulnar middiaphysis and at locations 3 mm proximal and 3 mm distal to the middiaphysis. Loading induced lamellar bone formation on the periosteal surface that was greater at the distal ulnar location and lower at the proximal location when compared with the middiaphysis. Likewise, peak strains on the periosteal surface were greatest distally and less proximally. There was a significant dose-response relationship between peak strain magnitude and periosteal new bone formation when the mechanically induced strain surpassed a threshold. The strain threshold varied from 1343 microstrain (μstrain) proximally to 2284 μstrain at the midshaft to 3074 μstrain distally. Unlike the periosteal response to mechanical loading, there was not a clear dose-response relationship between applied load and bone formation on the endocortical surface. Endocortical strains were estimated to be <20{\%} of periosteal strains and may not have been sufficient to initiate a bone formation response. Our results show that the osteogenic response on the periosteal surface of the ulna depends on peak strain level once a strain threshold is surpassed. The threshold strain is largest distally, where locomotor bone strains are typically higher and smallest proximally where locomotor bone strains are lower.",
keywords = "Adaptation, Mechanotransduction, Rat, Ulna",
author = "Hsieh, {Y. F.} and Alexander Robling and Ambrosius, {W. T.} and David Burr and Turner, {C. H.}",
year = "2001",
language = "English",
volume = "16",
pages = "2291--2297",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "12",

}

TY - JOUR

T1 - Mechanical loading of diaphyseal bone in vivo

T2 - The strain threshold for an osteogenic response varies with location

AU - Hsieh, Y. F.

AU - Robling, Alexander

AU - Ambrosius, W. T.

AU - Burr, David

AU - Turner, C. H.

PY - 2001

Y1 - 2001

N2 - Bone tissue responds to elevated mechanical loading with increased bone formation, which is triggered either directly or indirectly by the mechanical strain engendered in the bone tissue. Previous studies have shown that mechanical strain magnitude must surpass a threshold before bone formation is initiated. The objective of this study was to estimate the strain thresholds at three different locations along the ulna of adult rats. We hypothesized that the strain threshold would be greater in regions of the ulna habitually subjected to larger mechanical strains. New bone formation was measured on the periosteal and endocortical surfaces of the ulnar diaphysis in adult female rats exposed to controlled dynamic loading. Axial, compressive loading was applied daily at five different magnitudes for a period of 2 weeks. Bone formation rate (BFR) was measured, using double-label histomorphometry at the ulnar middiaphysis and at locations 3 mm proximal and 3 mm distal to the middiaphysis. Loading induced lamellar bone formation on the periosteal surface that was greater at the distal ulnar location and lower at the proximal location when compared with the middiaphysis. Likewise, peak strains on the periosteal surface were greatest distally and less proximally. There was a significant dose-response relationship between peak strain magnitude and periosteal new bone formation when the mechanically induced strain surpassed a threshold. The strain threshold varied from 1343 microstrain (μstrain) proximally to 2284 μstrain at the midshaft to 3074 μstrain distally. Unlike the periosteal response to mechanical loading, there was not a clear dose-response relationship between applied load and bone formation on the endocortical surface. Endocortical strains were estimated to be <20% of periosteal strains and may not have been sufficient to initiate a bone formation response. Our results show that the osteogenic response on the periosteal surface of the ulna depends on peak strain level once a strain threshold is surpassed. The threshold strain is largest distally, where locomotor bone strains are typically higher and smallest proximally where locomotor bone strains are lower.

AB - Bone tissue responds to elevated mechanical loading with increased bone formation, which is triggered either directly or indirectly by the mechanical strain engendered in the bone tissue. Previous studies have shown that mechanical strain magnitude must surpass a threshold before bone formation is initiated. The objective of this study was to estimate the strain thresholds at three different locations along the ulna of adult rats. We hypothesized that the strain threshold would be greater in regions of the ulna habitually subjected to larger mechanical strains. New bone formation was measured on the periosteal and endocortical surfaces of the ulnar diaphysis in adult female rats exposed to controlled dynamic loading. Axial, compressive loading was applied daily at five different magnitudes for a period of 2 weeks. Bone formation rate (BFR) was measured, using double-label histomorphometry at the ulnar middiaphysis and at locations 3 mm proximal and 3 mm distal to the middiaphysis. Loading induced lamellar bone formation on the periosteal surface that was greater at the distal ulnar location and lower at the proximal location when compared with the middiaphysis. Likewise, peak strains on the periosteal surface were greatest distally and less proximally. There was a significant dose-response relationship between peak strain magnitude and periosteal new bone formation when the mechanically induced strain surpassed a threshold. The strain threshold varied from 1343 microstrain (μstrain) proximally to 2284 μstrain at the midshaft to 3074 μstrain distally. Unlike the periosteal response to mechanical loading, there was not a clear dose-response relationship between applied load and bone formation on the endocortical surface. Endocortical strains were estimated to be <20% of periosteal strains and may not have been sufficient to initiate a bone formation response. Our results show that the osteogenic response on the periosteal surface of the ulna depends on peak strain level once a strain threshold is surpassed. The threshold strain is largest distally, where locomotor bone strains are typically higher and smallest proximally where locomotor bone strains are lower.

KW - Adaptation

KW - Mechanotransduction

KW - Rat

KW - Ulna

UR - http://www.scopus.com/inward/record.url?scp=0035192335&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035192335&partnerID=8YFLogxK

M3 - Article

VL - 16

SP - 2291

EP - 2297

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 12

ER -