Mechanisms underlying capsaicin effects in canine coronary artery: Implications for coronary spasm

S. Christopher Hiett, Meredith K. Owen, Wennan Li, Xingjuan Chen, Ashley Riley, Jillian Noblet, Sarah Flores, Michael Sturek, Johnathan D. Tune, Alexander G. Obukhov

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Aims The TRPV1, transient receptor potential vanilloid type 1, agonist capsaicin is considered to be beneficial for cardiovascular health because it dilates coronary arteries through an endothelial-dependent mechanism and may slow atheroma progression. However, recent reports indicate that high doses of capsaicin may constrict coronary arterioles and even provoke myocardial infarction. Thus far, the mechanisms by which TRPV1 activation modulates coronary vascular tone remain poorly understood. This investigation examined whether there is a synergistic interplay between locally acting vasoconstrictive pro-inflammatory hormones (autacoids) and capsaicin effects in the coronary circulation. Methods and results Experiments were performed in canine conduit coronary artery rings and isolated smooth muscle cells (CASMCs). Isometric tension measurements revealed that 1-10 μM capsaicin alone did not affect resting tension of coronary artery rings. In contrast, in endothelium-intact rings pre-contracted with aGq/11-coupled FP/TP (prostaglandin F/thromboxane) receptor agonist, prostaglandin F2α (PGF2α; 10 μM), capsaicin first induced transient dilation thatwas followed by sustained contraction. In endothelium-denuded rings pre-contracted with PGF2α or thromboxane analogue U46619 (1 μM, a TP receptor agonist), capsaicin induced only sustained contraction. Blockers of the TP receptor or TRPV1 significantly inhibited capsaicin effects, but these were still observed in the presence of 50 μM nifedipine and 70 μM KCl. Capsaicin also potentiated 20 μM KCl-induced contractions. Fluorescence imaging experiments in CASMCs revealed that theGq/11-phospholipaseC(PLC)-protein kinaseC(PKC) and Ca 2+-PLC-PKC pathways are likely involved in sensitizing CASMC TRPV1 channels. Conclusion Capsaicin alone does not cause contractions in conduit canine coronary artery; however, pre-treatment with pro-inflammatory prostaglandin-thromboxane agonists may unmask capsaicin's vasoconstrictive potential.

Original languageEnglish (US)
Pages (from-to)607-618
Number of pages12
JournalCardiovascular research
Volume103
Issue number4
DOIs
StatePublished - Jan 1 2014

Keywords

  • Coronary artery
  • Pro-inflammatory prostaglandin-thromboxane hormones
  • TRPV1

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Mechanisms underlying capsaicin effects in canine coronary artery: Implications for coronary spasm'. Together they form a unique fingerprint.

Cite this