Membrane ionic currents and properties of freshly dissociated rat brainstem neurons

Chun Jiang, Theodore R. Cummins, Gabriel G. Haddad

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


It is well known that neuronal firing properties are determined by synaptic inputs and inherent membrane functions such as specific ionic currents. To characterize the ionic currents of brainstem cardio-respiratory neurons, cells from the hypoglossal (XII) nucleus and the dorsal motor nucleus of the vagus (DMX) were freshly dissociated and membrane ionic currents were studied under whole-cell voltage and current clamp. Both of these neurons showed a TTX-sensitive Na+ current with a much larger current density in XII than DMX neurons. This Na+ current had two (fast and slow) distinct inactivation decay components. The ratio of the magnitudes of the fast to slow component was roughly two-fold greater in DMX than in XII cells. Both DMX and XII neurons also showed a high voltage-activated Ca2+ current, but this current density was significantly greater (three-fold) in DMX than XII neurons. A relatively small amount of low-voltage activated Ca2+ current was also observed in DMX neurons, but not in the majority of XII cells. A transient and a sustained outward current components were observed in DMX cells, but only sustained currents were present in XII neurons. These outward currents had a reversal potential of about -70 mV with 3 mM external K+ and -30mV with 25 mM K+, and substitution of K+ with cesium and tetraethylammonium suppressed more than 90% the outward currents, indicating that most outward currents were carried by K+. The transient outward current consisted of two components with one sensitive to 4-aminopyridine and the other to intracellular Ca2+. In XII neurons, BRL 38227 (lemakalim), an ATP-sensitive K+ (KATP) channel activator, increased the sustained K+ currents by 10% of control, and glibenclamide, a KATP channel blocker, decreased the sustained K+ currents by 20%. Evidence for the presence of an inward rectifier K+ current was also obtained from both XII and DMX neurons. These results on XII and DMX neurons indicate that (1) the methods used to dissociate neurons provide a useful means to overcome voltage clamp technical difficulties; (2) ion channel characteristics such as density and biophysical properties of DMX neurons are very different from those of XII neurons; and (3) several newly discovered membrane ionic currents are present in these cells.

Original languageEnglish (US)
Pages (from-to)407-420
Number of pages14
JournalExperimental Brain Research
Issue number2
StatePublished - Aug 1994


  • Hypoglossal
  • Ion channels
  • Patch clamp
  • Rat
  • Vagus

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Membrane ionic currents and properties of freshly dissociated rat brainstem neurons'. Together they form a unique fingerprint.

Cite this