Methamphetamine effects on blood-brain barrier structure and function

Nicole A. Northrop, Bryan Yamamoto

Research output: Contribution to journalReview article

40 Citations (Scopus)

Abstract

Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.

Original languageEnglish (US)
Article number69
JournalFrontiers in Neuroscience
Volume9
Issue numberMAR
DOIs
StatePublished - 2015
Externally publishedYes

Fingerprint

Methamphetamine
Blood-Brain Barrier
Neurotransmitter Agents
Permeability
Dopamine
Serotonin

Keywords

  • Blood-brain barrier
  • Glutamate
  • Methamphetamine
  • Neuroinflammation
  • Oxidative stress
  • Tight junction

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Methamphetamine effects on blood-brain barrier structure and function. / Northrop, Nicole A.; Yamamoto, Bryan.

In: Frontiers in Neuroscience, Vol. 9, No. MAR, 69, 2015.

Research output: Contribution to journalReview article

@article{a020d7e9c251441782f6a45e38ac4cd0,
title = "Methamphetamine effects on blood-brain barrier structure and function",
abstract = "Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.",
keywords = "Blood-brain barrier, Glutamate, Methamphetamine, Neuroinflammation, Oxidative stress, Tight junction",
author = "Northrop, {Nicole A.} and Bryan Yamamoto",
year = "2015",
doi = "10.3389/fnins.2015.00069",
language = "English (US)",
volume = "9",
journal = "Frontiers in Neuroscience",
issn = "1662-4548",
publisher = "Frontiers Research Foundation",
number = "MAR",

}

TY - JOUR

T1 - Methamphetamine effects on blood-brain barrier structure and function

AU - Northrop, Nicole A.

AU - Yamamoto, Bryan

PY - 2015

Y1 - 2015

N2 - Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.

AB - Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.

KW - Blood-brain barrier

KW - Glutamate

KW - Methamphetamine

KW - Neuroinflammation

KW - Oxidative stress

KW - Tight junction

UR - http://www.scopus.com/inward/record.url?scp=84928008254&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84928008254&partnerID=8YFLogxK

U2 - 10.3389/fnins.2015.00069

DO - 10.3389/fnins.2015.00069

M3 - Review article

VL - 9

JO - Frontiers in Neuroscience

JF - Frontiers in Neuroscience

SN - 1662-4548

IS - MAR

M1 - 69

ER -