Method of post-shock synchronized pacing in the excitable gaps.

Liang Tang, Gyo Seung Hwang, Lin Yang, Shien Fong Lin

Research output: Contribution to journalArticle

Abstract

Ventricular fibrillation (VF) can be synchronized with a novel synchronized pacing technique (SyncP) using low-energy pacing pulses, which causes pace termination of VF. Synchronized pacing (SyncP) is defined as optical recording guided real-time detection and stimulation of spatiotemporal excitable gaps. In this paper, we investigate the effect of post-shock SyncP strategy on improvement of defibrillation efficacy. After a near-threshold defibrillation shock, when the reference site detected the earliest activation of the reinitiated VF, a 5-mA electric stimulus was delivered from the post-shock pacing electrode to depolarize the excitable gap. This area of wavefront synchronization may lead to a change in the timing of VF propagation, which is important for VF termination. Here, we implemented the concept of post-shock synchronized pacing by a real-time feedback mechanism and demonstrated a successful VF termination by the post-shock SyncP strategy. Further optimization of this technique may prove effective in improving the defibrillation efficacy for low-energy ventricular defibrillation.

Original languageEnglish (US)
Pages (from-to)4362-4365
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
StatePublished - 2006
Externally publishedYes

Fingerprint

Optical recording
Ventricular Fibrillation
Wavefronts
Shock
Synchronization
Chemical activation
Feedback
Electrodes

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{f4e123465f7d402d9e8b3761fd6cb996,
title = "Method of post-shock synchronized pacing in the excitable gaps.",
abstract = "Ventricular fibrillation (VF) can be synchronized with a novel synchronized pacing technique (SyncP) using low-energy pacing pulses, which causes pace termination of VF. Synchronized pacing (SyncP) is defined as optical recording guided real-time detection and stimulation of spatiotemporal excitable gaps. In this paper, we investigate the effect of post-shock SyncP strategy on improvement of defibrillation efficacy. After a near-threshold defibrillation shock, when the reference site detected the earliest activation of the reinitiated VF, a 5-mA electric stimulus was delivered from the post-shock pacing electrode to depolarize the excitable gap. This area of wavefront synchronization may lead to a change in the timing of VF propagation, which is important for VF termination. Here, we implemented the concept of post-shock synchronized pacing by a real-time feedback mechanism and demonstrated a successful VF termination by the post-shock SyncP strategy. Further optimization of this technique may prove effective in improving the defibrillation efficacy for low-energy ventricular defibrillation.",
author = "Liang Tang and Hwang, {Gyo Seung} and Lin Yang and Lin, {Shien Fong}",
year = "2006",
language = "English (US)",
pages = "4362--4365",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Method of post-shock synchronized pacing in the excitable gaps.

AU - Tang, Liang

AU - Hwang, Gyo Seung

AU - Yang, Lin

AU - Lin, Shien Fong

PY - 2006

Y1 - 2006

N2 - Ventricular fibrillation (VF) can be synchronized with a novel synchronized pacing technique (SyncP) using low-energy pacing pulses, which causes pace termination of VF. Synchronized pacing (SyncP) is defined as optical recording guided real-time detection and stimulation of spatiotemporal excitable gaps. In this paper, we investigate the effect of post-shock SyncP strategy on improvement of defibrillation efficacy. After a near-threshold defibrillation shock, when the reference site detected the earliest activation of the reinitiated VF, a 5-mA electric stimulus was delivered from the post-shock pacing electrode to depolarize the excitable gap. This area of wavefront synchronization may lead to a change in the timing of VF propagation, which is important for VF termination. Here, we implemented the concept of post-shock synchronized pacing by a real-time feedback mechanism and demonstrated a successful VF termination by the post-shock SyncP strategy. Further optimization of this technique may prove effective in improving the defibrillation efficacy for low-energy ventricular defibrillation.

AB - Ventricular fibrillation (VF) can be synchronized with a novel synchronized pacing technique (SyncP) using low-energy pacing pulses, which causes pace termination of VF. Synchronized pacing (SyncP) is defined as optical recording guided real-time detection and stimulation of spatiotemporal excitable gaps. In this paper, we investigate the effect of post-shock SyncP strategy on improvement of defibrillation efficacy. After a near-threshold defibrillation shock, when the reference site detected the earliest activation of the reinitiated VF, a 5-mA electric stimulus was delivered from the post-shock pacing electrode to depolarize the excitable gap. This area of wavefront synchronization may lead to a change in the timing of VF propagation, which is important for VF termination. Here, we implemented the concept of post-shock synchronized pacing by a real-time feedback mechanism and demonstrated a successful VF termination by the post-shock SyncP strategy. Further optimization of this technique may prove effective in improving the defibrillation efficacy for low-energy ventricular defibrillation.

UR - http://www.scopus.com/inward/record.url?scp=84903863816&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903863816&partnerID=8YFLogxK

M3 - Article

SP - 4362

EP - 4365

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -