Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes.

Original languageEnglish
Pages (from-to)881-897
Number of pages17
JournalJournal of Comparative Physiology B
Volume182
Issue number7
DOIs
StatePublished - Oct 2012

Fingerprint

Hydrogen Sulfide
hydrogen sulfide
Sulfides
sulfides
sulfide
Sulfur
sulfur
energy
eukaryotic cells
eukaryote
Eukaryota
Iron
iron
Oxygen
oxygen
sulfur cycle
Prebiotics
Molecules
Mammals
structural component

Keywords

  • Evolution
  • H2S metabolism
  • H2S toxicity
  • Oxygen sensing
  • Sulfur: quinone: oxidoreductase

ASJC Scopus subject areas

  • Physiology
  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology
  • Biochemistry
  • Endocrinology

Cite this

Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. / Olson, Kenneth.

In: Journal of Comparative Physiology B, Vol. 182, No. 7, 10.2012, p. 881-897.

Research output: Contribution to journalArticle

@article{50a2e14fdd714e0c904ac1089f6e98aa,
title = "Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling",
abstract = "Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes.",
keywords = "Evolution, H2S metabolism, H2S toxicity, Oxygen sensing, Sulfur: quinone: oxidoreductase",
author = "Kenneth Olson",
year = "2012",
month = "10",
doi = "10.1007/s00360-012-0654-y",
language = "English",
volume = "182",
pages = "881--897",
journal = "Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology",
issn = "0174-1578",
publisher = "Springer Verlag",
number = "7",

}

TY - JOUR

T1 - Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling

AU - Olson, Kenneth

PY - 2012/10

Y1 - 2012/10

N2 - Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes.

AB - Sulfur is a versatile molecule with oxidation states ranging from -2 to +6. From the beginning, sulfur has been inexorably entwined with the evolution of organisms. Reduced sulfur, prevalent in the prebiotic Earth and supplied from interstellar sources, was an integral component of early life as it could provide energy through oxidization, even in a weakly oxidizing environment, and it spontaneously reacted with iron to form iron-sulfur clusters that became the earliest biological catalysts and structural components of cells. The ability to cycle sulfur between reduced and oxidized states may have been key in the great endosymbiotic event that incorporated a sulfide-oxidizing α-protobacteria into a host sulfide-reducing Archea, resulting in the eukaryotic cell. As eukaryotes slowly adapted from a sulfidic and anoxic (euxinic) world to one that was highly oxidizing, numerous mechanisms developed to deal with increasing oxidants; namely, oxygen, and decreasing sulfide. Because there is rarely any reduced sulfur in the present-day environment, sulfur was historically ignored by biologists, except for an occasional report of sulfide toxicity. Twenty-five years ago, it became evident that the organisms in sulfide-rich environments could synthesize ATP from sulfide, 10 years later came the realization that animals might use sulfide as a signaling molecule, and only within the last 4 years did it become apparent that even mammals could derive energy from sulfide generated in the gastrointestinal tract. It has also become evident that, even in the present-day oxic environment, cells can exploit the redox chemistry of sulfide, most notably as a physiological transducer of oxygen availability. This review will examine how the legacy of sulfide metabolism has shaped natural selection and how some of these ancient biochemical pathways are still employed by modern-day eukaryotes.

KW - Evolution

KW - H2S metabolism

KW - H2S toxicity

KW - Oxygen sensing

KW - Sulfur: quinone: oxidoreductase

UR - http://www.scopus.com/inward/record.url?scp=84866684700&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84866684700&partnerID=8YFLogxK

U2 - 10.1007/s00360-012-0654-y

DO - 10.1007/s00360-012-0654-y

M3 - Article

C2 - 22430869

AN - SCOPUS:84866684700

VL - 182

SP - 881

EP - 897

JO - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology

JF - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology

SN - 0174-1578

IS - 7

ER -