Mode of fibroblast growth enhancement by human interleukin-1

J. P. Singh, L. D. Adams, P. D. Bonin

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Previous studies have demonstrated that interleukin-1 (IL-1) stimulates fibroblast growth (Schmidt, J. A., S. B. Mizel, D. Cohn, and I. Green. 1982. J. Immunol. 128:2177-2182) and binds to specific, high affinity receptors of BALB/c3T3 cells (Bird, T. A., and J. Saklatval. 1986. Nature [Lond.]. 324:263-265, 266-268). We have investigated the mechanism of fibroblast growth stimulation by IL-1. Addition of fibroblast growth factor derived from platelets (PDGF) to a quiescent culture of BALB/c3T3 cells produced 8-10-fold increase in DNA synthesis during 24-h incubation. The cellular action of PDGF was mediated through competence induction and required synergistic action of plasma-derived factors for full mitogenic activity. When tested at a wide range of concentrations (0.1-100 pM), natural IL-1 or recombinant IL-1 produced only a maximum of 5-10% of DNA synthesis elicited in response to PDGF or serum. Induction of DNA synthesis required continuous presence of IL-1 and did not exhibit synergism with plasma. Competence induction and mitogenic stimulation by PDGF was associated with early induction of proteins P32, P38, P46-48, P75, and changes in cytoskeletal organization. Examination of these early cellular changes showed that IL-1 did not produce similar induction of cellular proteins and the morphological changes associated with growth stimulation. These results suggest that the mode of IL-1 action on BALB/c3T3 was not through competence induction. When IL-1 was added to cells rendered competent by brief exposure to PDGF, 10-15% additional DNA synthesis occurred during the first 24 h. Extended incubation of PDGF-treated cells in the presence of IL-1 revealed that the stimulation by IL-1 occurred predominantly during the subsequent cycle of DNA replication, wherein DNA synthesis reached three- to fivefold higher than the untreated cultures. We conclude (a) IL-1 alone is not a potent mitogen for BALB/c3T3 cells, and does not bring cells out of the growth arrest G(o) phase, (b) treatment with PDGF renders the cells more responsive to IL-1, (c) part of the IL-1 action on competent cells may be characterized as progression inducing activity, further, (d) our results indicate that action of IL-1 on PDGF-treated cells produces sustained DNA synthesis for an extended period, perhaps by preventing the entry of cells into growth arrest G(o) phase.

Original languageEnglish (US)
Pages (from-to)813-819
Number of pages7
JournalJournal of Cell Biology
Volume106
Issue number3
StatePublished - 1988
Externally publishedYes

Fingerprint

Interleukin-1
Fibroblasts
Growth
DNA
Mental Competency
Fibroblast Growth Factors
DNA Replication
Mitogens
Birds
Proteins
Blood Platelets

ASJC Scopus subject areas

  • Cell Biology

Cite this

Singh, J. P., Adams, L. D., & Bonin, P. D. (1988). Mode of fibroblast growth enhancement by human interleukin-1. Journal of Cell Biology, 106(3), 813-819.

Mode of fibroblast growth enhancement by human interleukin-1. / Singh, J. P.; Adams, L. D.; Bonin, P. D.

In: Journal of Cell Biology, Vol. 106, No. 3, 1988, p. 813-819.

Research output: Contribution to journalArticle

Singh, JP, Adams, LD & Bonin, PD 1988, 'Mode of fibroblast growth enhancement by human interleukin-1', Journal of Cell Biology, vol. 106, no. 3, pp. 813-819.
Singh, J. P. ; Adams, L. D. ; Bonin, P. D. / Mode of fibroblast growth enhancement by human interleukin-1. In: Journal of Cell Biology. 1988 ; Vol. 106, No. 3. pp. 813-819.
@article{05f0c17638484635a3c144db33582c0a,
title = "Mode of fibroblast growth enhancement by human interleukin-1",
abstract = "Previous studies have demonstrated that interleukin-1 (IL-1) stimulates fibroblast growth (Schmidt, J. A., S. B. Mizel, D. Cohn, and I. Green. 1982. J. Immunol. 128:2177-2182) and binds to specific, high affinity receptors of BALB/c3T3 cells (Bird, T. A., and J. Saklatval. 1986. Nature [Lond.]. 324:263-265, 266-268). We have investigated the mechanism of fibroblast growth stimulation by IL-1. Addition of fibroblast growth factor derived from platelets (PDGF) to a quiescent culture of BALB/c3T3 cells produced 8-10-fold increase in DNA synthesis during 24-h incubation. The cellular action of PDGF was mediated through competence induction and required synergistic action of plasma-derived factors for full mitogenic activity. When tested at a wide range of concentrations (0.1-100 pM), natural IL-1 or recombinant IL-1 produced only a maximum of 5-10{\%} of DNA synthesis elicited in response to PDGF or serum. Induction of DNA synthesis required continuous presence of IL-1 and did not exhibit synergism with plasma. Competence induction and mitogenic stimulation by PDGF was associated with early induction of proteins P32, P38, P46-48, P75, and changes in cytoskeletal organization. Examination of these early cellular changes showed that IL-1 did not produce similar induction of cellular proteins and the morphological changes associated with growth stimulation. These results suggest that the mode of IL-1 action on BALB/c3T3 was not through competence induction. When IL-1 was added to cells rendered competent by brief exposure to PDGF, 10-15{\%} additional DNA synthesis occurred during the first 24 h. Extended incubation of PDGF-treated cells in the presence of IL-1 revealed that the stimulation by IL-1 occurred predominantly during the subsequent cycle of DNA replication, wherein DNA synthesis reached three- to fivefold higher than the untreated cultures. We conclude (a) IL-1 alone is not a potent mitogen for BALB/c3T3 cells, and does not bring cells out of the growth arrest G(o) phase, (b) treatment with PDGF renders the cells more responsive to IL-1, (c) part of the IL-1 action on competent cells may be characterized as progression inducing activity, further, (d) our results indicate that action of IL-1 on PDGF-treated cells produces sustained DNA synthesis for an extended period, perhaps by preventing the entry of cells into growth arrest G(o) phase.",
author = "Singh, {J. P.} and Adams, {L. D.} and Bonin, {P. D.}",
year = "1988",
language = "English (US)",
volume = "106",
pages = "813--819",
journal = "Journal of Cell Biology",
issn = "0021-9525",
publisher = "Rockefeller University Press",
number = "3",

}

TY - JOUR

T1 - Mode of fibroblast growth enhancement by human interleukin-1

AU - Singh, J. P.

AU - Adams, L. D.

AU - Bonin, P. D.

PY - 1988

Y1 - 1988

N2 - Previous studies have demonstrated that interleukin-1 (IL-1) stimulates fibroblast growth (Schmidt, J. A., S. B. Mizel, D. Cohn, and I. Green. 1982. J. Immunol. 128:2177-2182) and binds to specific, high affinity receptors of BALB/c3T3 cells (Bird, T. A., and J. Saklatval. 1986. Nature [Lond.]. 324:263-265, 266-268). We have investigated the mechanism of fibroblast growth stimulation by IL-1. Addition of fibroblast growth factor derived from platelets (PDGF) to a quiescent culture of BALB/c3T3 cells produced 8-10-fold increase in DNA synthesis during 24-h incubation. The cellular action of PDGF was mediated through competence induction and required synergistic action of plasma-derived factors for full mitogenic activity. When tested at a wide range of concentrations (0.1-100 pM), natural IL-1 or recombinant IL-1 produced only a maximum of 5-10% of DNA synthesis elicited in response to PDGF or serum. Induction of DNA synthesis required continuous presence of IL-1 and did not exhibit synergism with plasma. Competence induction and mitogenic stimulation by PDGF was associated with early induction of proteins P32, P38, P46-48, P75, and changes in cytoskeletal organization. Examination of these early cellular changes showed that IL-1 did not produce similar induction of cellular proteins and the morphological changes associated with growth stimulation. These results suggest that the mode of IL-1 action on BALB/c3T3 was not through competence induction. When IL-1 was added to cells rendered competent by brief exposure to PDGF, 10-15% additional DNA synthesis occurred during the first 24 h. Extended incubation of PDGF-treated cells in the presence of IL-1 revealed that the stimulation by IL-1 occurred predominantly during the subsequent cycle of DNA replication, wherein DNA synthesis reached three- to fivefold higher than the untreated cultures. We conclude (a) IL-1 alone is not a potent mitogen for BALB/c3T3 cells, and does not bring cells out of the growth arrest G(o) phase, (b) treatment with PDGF renders the cells more responsive to IL-1, (c) part of the IL-1 action on competent cells may be characterized as progression inducing activity, further, (d) our results indicate that action of IL-1 on PDGF-treated cells produces sustained DNA synthesis for an extended period, perhaps by preventing the entry of cells into growth arrest G(o) phase.

AB - Previous studies have demonstrated that interleukin-1 (IL-1) stimulates fibroblast growth (Schmidt, J. A., S. B. Mizel, D. Cohn, and I. Green. 1982. J. Immunol. 128:2177-2182) and binds to specific, high affinity receptors of BALB/c3T3 cells (Bird, T. A., and J. Saklatval. 1986. Nature [Lond.]. 324:263-265, 266-268). We have investigated the mechanism of fibroblast growth stimulation by IL-1. Addition of fibroblast growth factor derived from platelets (PDGF) to a quiescent culture of BALB/c3T3 cells produced 8-10-fold increase in DNA synthesis during 24-h incubation. The cellular action of PDGF was mediated through competence induction and required synergistic action of plasma-derived factors for full mitogenic activity. When tested at a wide range of concentrations (0.1-100 pM), natural IL-1 or recombinant IL-1 produced only a maximum of 5-10% of DNA synthesis elicited in response to PDGF or serum. Induction of DNA synthesis required continuous presence of IL-1 and did not exhibit synergism with plasma. Competence induction and mitogenic stimulation by PDGF was associated with early induction of proteins P32, P38, P46-48, P75, and changes in cytoskeletal organization. Examination of these early cellular changes showed that IL-1 did not produce similar induction of cellular proteins and the morphological changes associated with growth stimulation. These results suggest that the mode of IL-1 action on BALB/c3T3 was not through competence induction. When IL-1 was added to cells rendered competent by brief exposure to PDGF, 10-15% additional DNA synthesis occurred during the first 24 h. Extended incubation of PDGF-treated cells in the presence of IL-1 revealed that the stimulation by IL-1 occurred predominantly during the subsequent cycle of DNA replication, wherein DNA synthesis reached three- to fivefold higher than the untreated cultures. We conclude (a) IL-1 alone is not a potent mitogen for BALB/c3T3 cells, and does not bring cells out of the growth arrest G(o) phase, (b) treatment with PDGF renders the cells more responsive to IL-1, (c) part of the IL-1 action on competent cells may be characterized as progression inducing activity, further, (d) our results indicate that action of IL-1 on PDGF-treated cells produces sustained DNA synthesis for an extended period, perhaps by preventing the entry of cells into growth arrest G(o) phase.

UR - http://www.scopus.com/inward/record.url?scp=0023840624&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023840624&partnerID=8YFLogxK

M3 - Article

C2 - 3257966

AN - SCOPUS:0023840624

VL - 106

SP - 813

EP - 819

JO - Journal of Cell Biology

JF - Journal of Cell Biology

SN - 0021-9525

IS - 3

ER -