Modeling heart procedures from EHRs: An application of exponential families

Shuo Yang, Fabian Hadiji, Kristian Kersting, Shaun Grannis, Sriraam Natarajan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In order to facilitate better estimations on coronary artery disease conditions of a patient, we aim to predict the number of Angioplasty (a coronary artery procedure) by taking into account all the information from his/her Electronic Health Record (EHR) data. For this purpose, two exponential family members - multinomial distribution and Poisson distribution models - are considered, which treat the target variable as categorical-valued and count-valued respectively. From the perspective of exponential family, we derive the functional gradient boosting approach for these two distributions and analyze their assumptions with real EHR data. Our empirical results show that Poisson models appear to be more faithful for modeling the number of this procedure.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
EditorsIllhoi Yoo, Jane Huiru Zheng, Yang Gong, Xiaohua Tony Hu, Chi-Ren Shyu, Yana Bromberg, Jean Gao, Dmitry Korkin
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages491-497
Number of pages7
ISBN (Electronic)9781509030491
DOIs
StatePublished - Dec 15 2017
Event2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 - Kansas City, United States
Duration: Nov 13 2017Nov 16 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
Volume2017-January

Other

Other2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
CountryUnited States
CityKansas City
Period11/13/1711/16/17

Keywords

  • EHR
  • clinical events prediction
  • exponential family
  • probabilistic models

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics

Fingerprint Dive into the research topics of 'Modeling heart procedures from EHRs: An application of exponential families'. Together they form a unique fingerprint.

  • Cite this

    Yang, S., Hadiji, F., Kersting, K., Grannis, S., & Natarajan, S. (2017). Modeling heart procedures from EHRs: An application of exponential families. In I. Yoo, J. H. Zheng, Y. Gong, X. T. Hu, C-R. Shyu, Y. Bromberg, J. Gao, & D. Korkin (Eds.), Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 (pp. 491-497). (Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017; Vol. 2017-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BIBM.2017.8217696