Multiple myeloma.

Kenneth C. Anderson, John D. Shaughnessy, Bart Barlogie, Jean Luc Harousseau, G. David Roodman

Research output: Contribution to journalArticle

68 Citations (Scopus)

Abstract

This update provides new insights into the biology, diagnosis, prognosis, and treatment of multiple myeloma (MM) and its complications. In Section I, Drs. John Shaughnessy, Jr., and Bart Barlogie first correlate global gene microarray expression profiling of patient MM samples with normal plasma cells to provide the basis for a developmental stage-based classification of MM. The powerful clinical utility of these analyses is illustrated in delineating mechanism of drug action, identifying novel therapeutic targets, and providing a molecular analysis not only of the tumor cell, but also of the tumor microenvironment, in MM. In Section II, Dr. Jean-Luc Harousseau reviews the rationale and current results of high dose therapy and autologous stem cell transplantation in MM, including optimal patient selection, prognostic factors, conditioning regimens, sources of stem cells, use of tandem transplantation, and maintenance therapy. He then provides an update on the results of allotransplantation approaches in MM, focusing on proposed methods to reduce toxicity and exploit the graft-versus-MM alloimmune effect by transplantation earlier in the disease course, T cell depletion, and nonmyeloablative transplantation. In Section III, Dr. G. David Roodman provides recent insights into the mechanisms of osteoclast activation, interactions between bone and MM cells, adhesive interactions in MM bone disease, and osteoblast suppression. These recent advances not only provide insights into pathogenesis of MM bone disease, but also form the framework for novel therapeutics. In Section IV, Dr. Kenneth Anderson provides an up-to-date discussion of the role of the bone marrow microenvironment in promoting growth, survival, drug resistance, and migration of MM cells and the signaling cascades mediating these sequelae. These studies provide the framework for evaluation of novel therapeutics targeting the MM cell-host interaction in vivo in animal models and in derived clinical trials.

Original languageEnglish (US)
Pages (from-to)214-240
Number of pages27
JournalHematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program
StatePublished - 2002
Externally publishedYes

Fingerprint

Multiple Myeloma
Transplantation
Bone Diseases
Cell Communication
Therapeutics
Tumor Microenvironment
Stem Cell Transplantation
Gene Expression Profiling
Osteoclasts
Plasma Cells
Osteoblasts
Drug Resistance
Adhesives
Patient Selection
Stem Cells
Animal Models
Bone Marrow
Clinical Trials
T-Lymphocytes
Transplants

Cite this

Multiple myeloma. / Anderson, Kenneth C.; Shaughnessy, John D.; Barlogie, Bart; Harousseau, Jean Luc; Roodman, G. David.

In: Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program, 2002, p. 214-240.

Research output: Contribution to journalArticle

Anderson, Kenneth C. ; Shaughnessy, John D. ; Barlogie, Bart ; Harousseau, Jean Luc ; Roodman, G. David. / Multiple myeloma. In: Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program. 2002 ; pp. 214-240.
@article{fbbe9a59b9a041c4af558ebf8fe276f5,
title = "Multiple myeloma.",
abstract = "This update provides new insights into the biology, diagnosis, prognosis, and treatment of multiple myeloma (MM) and its complications. In Section I, Drs. John Shaughnessy, Jr., and Bart Barlogie first correlate global gene microarray expression profiling of patient MM samples with normal plasma cells to provide the basis for a developmental stage-based classification of MM. The powerful clinical utility of these analyses is illustrated in delineating mechanism of drug action, identifying novel therapeutic targets, and providing a molecular analysis not only of the tumor cell, but also of the tumor microenvironment, in MM. In Section II, Dr. Jean-Luc Harousseau reviews the rationale and current results of high dose therapy and autologous stem cell transplantation in MM, including optimal patient selection, prognostic factors, conditioning regimens, sources of stem cells, use of tandem transplantation, and maintenance therapy. He then provides an update on the results of allotransplantation approaches in MM, focusing on proposed methods to reduce toxicity and exploit the graft-versus-MM alloimmune effect by transplantation earlier in the disease course, T cell depletion, and nonmyeloablative transplantation. In Section III, Dr. G. David Roodman provides recent insights into the mechanisms of osteoclast activation, interactions between bone and MM cells, adhesive interactions in MM bone disease, and osteoblast suppression. These recent advances not only provide insights into pathogenesis of MM bone disease, but also form the framework for novel therapeutics. In Section IV, Dr. Kenneth Anderson provides an up-to-date discussion of the role of the bone marrow microenvironment in promoting growth, survival, drug resistance, and migration of MM cells and the signaling cascades mediating these sequelae. These studies provide the framework for evaluation of novel therapeutics targeting the MM cell-host interaction in vivo in animal models and in derived clinical trials.",
author = "Anderson, {Kenneth C.} and Shaughnessy, {John D.} and Bart Barlogie and Harousseau, {Jean Luc} and Roodman, {G. David}",
year = "2002",
language = "English (US)",
pages = "214--240",
journal = "Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program",
issn = "1520-4391",
publisher = "American Society of Hematology",

}

TY - JOUR

T1 - Multiple myeloma.

AU - Anderson, Kenneth C.

AU - Shaughnessy, John D.

AU - Barlogie, Bart

AU - Harousseau, Jean Luc

AU - Roodman, G. David

PY - 2002

Y1 - 2002

N2 - This update provides new insights into the biology, diagnosis, prognosis, and treatment of multiple myeloma (MM) and its complications. In Section I, Drs. John Shaughnessy, Jr., and Bart Barlogie first correlate global gene microarray expression profiling of patient MM samples with normal plasma cells to provide the basis for a developmental stage-based classification of MM. The powerful clinical utility of these analyses is illustrated in delineating mechanism of drug action, identifying novel therapeutic targets, and providing a molecular analysis not only of the tumor cell, but also of the tumor microenvironment, in MM. In Section II, Dr. Jean-Luc Harousseau reviews the rationale and current results of high dose therapy and autologous stem cell transplantation in MM, including optimal patient selection, prognostic factors, conditioning regimens, sources of stem cells, use of tandem transplantation, and maintenance therapy. He then provides an update on the results of allotransplantation approaches in MM, focusing on proposed methods to reduce toxicity and exploit the graft-versus-MM alloimmune effect by transplantation earlier in the disease course, T cell depletion, and nonmyeloablative transplantation. In Section III, Dr. G. David Roodman provides recent insights into the mechanisms of osteoclast activation, interactions between bone and MM cells, adhesive interactions in MM bone disease, and osteoblast suppression. These recent advances not only provide insights into pathogenesis of MM bone disease, but also form the framework for novel therapeutics. In Section IV, Dr. Kenneth Anderson provides an up-to-date discussion of the role of the bone marrow microenvironment in promoting growth, survival, drug resistance, and migration of MM cells and the signaling cascades mediating these sequelae. These studies provide the framework for evaluation of novel therapeutics targeting the MM cell-host interaction in vivo in animal models and in derived clinical trials.

AB - This update provides new insights into the biology, diagnosis, prognosis, and treatment of multiple myeloma (MM) and its complications. In Section I, Drs. John Shaughnessy, Jr., and Bart Barlogie first correlate global gene microarray expression profiling of patient MM samples with normal plasma cells to provide the basis for a developmental stage-based classification of MM. The powerful clinical utility of these analyses is illustrated in delineating mechanism of drug action, identifying novel therapeutic targets, and providing a molecular analysis not only of the tumor cell, but also of the tumor microenvironment, in MM. In Section II, Dr. Jean-Luc Harousseau reviews the rationale and current results of high dose therapy and autologous stem cell transplantation in MM, including optimal patient selection, prognostic factors, conditioning regimens, sources of stem cells, use of tandem transplantation, and maintenance therapy. He then provides an update on the results of allotransplantation approaches in MM, focusing on proposed methods to reduce toxicity and exploit the graft-versus-MM alloimmune effect by transplantation earlier in the disease course, T cell depletion, and nonmyeloablative transplantation. In Section III, Dr. G. David Roodman provides recent insights into the mechanisms of osteoclast activation, interactions between bone and MM cells, adhesive interactions in MM bone disease, and osteoblast suppression. These recent advances not only provide insights into pathogenesis of MM bone disease, but also form the framework for novel therapeutics. In Section IV, Dr. Kenneth Anderson provides an up-to-date discussion of the role of the bone marrow microenvironment in promoting growth, survival, drug resistance, and migration of MM cells and the signaling cascades mediating these sequelae. These studies provide the framework for evaluation of novel therapeutics targeting the MM cell-host interaction in vivo in animal models and in derived clinical trials.

UR - http://www.scopus.com/inward/record.url?scp=0037822430&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037822430&partnerID=8YFLogxK

M3 - Article

C2 - 12446425

AN - SCOPUS:0037822430

SP - 214

EP - 240

JO - Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program

JF - Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program

SN - 1520-4391

ER -