Mutant huntingtin fails to directly impair brain mitochondria

James Hamilton, Tatiana Brustovetsky, Nickolay Brustovetsky

Research output: Contribution to journalArticle

Abstract

Although the mechanisms by which mutant huntingtin (mHtt) results in Huntington's disease (HD) remain unclear, mHtt-induced mitochondrial defects were implicated in HD pathogenesis. The effect of mHtt could be mediated by transcriptional alterations, by direct interaction with mitochondria, or by both. In the present study, we tested a hypothesis that mHtt directly damages mitochondria. To test this hypothesis, we applied brain cytosolic fraction from YAC128 mice, containing mHtt, to brain non-synaptic and synaptic mitochondria from wild-type mice and assessed mitochondrial respiration with a Clark-type oxygen electrode, membrane potential and Ca2+ uptake capacity with tetraphenylphosphonium (TPP+)- and Ca2+-sensitive electrodes, respectively, and, reactive oxygen species production with Amplex Red assay. The amount of mHtt bound to mitochondria following incubation with mHtt-containing cytosolic fraction was greater than the amount of mHtt bound to brain mitochondria isolated from YAC128 mice. Despite mHtt binding to wild-type mitochondria, no abnormalities in mitochondrial functions were detected. This is consistent with our previous results demonstrating the lack of defects in brain mitochondria isolated from R6/2 and YAC128 mice. This, however, could be because of partial loss of mitochondrially bound mHtt during the isolation procedure. Consequently, we increased the amount of mitochondrially bound mHtt by incubating brain non-synaptic and synaptic mitochondria isolated from YAC128 mice with mHtt-containing cytosolic fraction. Despite the enrichment of YAC128 brain mitochondria with mHtt, mitochondrial functions (respiration, membrane potential, reactive oxygen species production, Ca2+ uptake capacity) remained unchanged. Overall, our results suggest that mHtt does not directly impair mitochondrial functions, arguing against the involvement of this mechanism in HD pathogenesis. Open science badges: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. (Figure presented.).

Original languageEnglish (US)
JournalJournal of Neurochemistry
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

Mitochondria
Brain
Huntington Disease
Membrane Potentials
Reactive Oxygen Species
Electrodes
Respiration
Membranes
Defects
Manuscripts
Disclosure
Assays
Oxygen

Keywords

  • calcium
  • Huntington's disease
  • mitochondria
  • mitochondrial membrane potential
  • reactive oxygen species
  • respiration

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this

Mutant huntingtin fails to directly impair brain mitochondria. / Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay.

In: Journal of Neurochemistry, 01.01.2019.

Research output: Contribution to journalArticle

@article{a6bf985e646a491da64d21f7895f1718,
title = "Mutant huntingtin fails to directly impair brain mitochondria",
abstract = "Although the mechanisms by which mutant huntingtin (mHtt) results in Huntington's disease (HD) remain unclear, mHtt-induced mitochondrial defects were implicated in HD pathogenesis. The effect of mHtt could be mediated by transcriptional alterations, by direct interaction with mitochondria, or by both. In the present study, we tested a hypothesis that mHtt directly damages mitochondria. To test this hypothesis, we applied brain cytosolic fraction from YAC128 mice, containing mHtt, to brain non-synaptic and synaptic mitochondria from wild-type mice and assessed mitochondrial respiration with a Clark-type oxygen electrode, membrane potential and Ca2+ uptake capacity with tetraphenylphosphonium (TPP+)- and Ca2+-sensitive electrodes, respectively, and, reactive oxygen species production with Amplex Red assay. The amount of mHtt bound to mitochondria following incubation with mHtt-containing cytosolic fraction was greater than the amount of mHtt bound to brain mitochondria isolated from YAC128 mice. Despite mHtt binding to wild-type mitochondria, no abnormalities in mitochondrial functions were detected. This is consistent with our previous results demonstrating the lack of defects in brain mitochondria isolated from R6/2 and YAC128 mice. This, however, could be because of partial loss of mitochondrially bound mHtt during the isolation procedure. Consequently, we increased the amount of mitochondrially bound mHtt by incubating brain non-synaptic and synaptic mitochondria isolated from YAC128 mice with mHtt-containing cytosolic fraction. Despite the enrichment of YAC128 brain mitochondria with mHtt, mitochondrial functions (respiration, membrane potential, reactive oxygen species production, Ca2+ uptake capacity) remained unchanged. Overall, our results suggest that mHtt does not directly impair mitochondrial functions, arguing against the involvement of this mechanism in HD pathogenesis. Open science badges: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. (Figure presented.).",
keywords = "calcium, Huntington's disease, mitochondria, mitochondrial membrane potential, reactive oxygen species, respiration",
author = "James Hamilton and Tatiana Brustovetsky and Nickolay Brustovetsky",
year = "2019",
month = "1",
day = "1",
doi = "10.1111/jnc.14852",
language = "English (US)",
journal = "Journal of Neurochemistry",
issn = "0022-3042",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Mutant huntingtin fails to directly impair brain mitochondria

AU - Hamilton, James

AU - Brustovetsky, Tatiana

AU - Brustovetsky, Nickolay

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Although the mechanisms by which mutant huntingtin (mHtt) results in Huntington's disease (HD) remain unclear, mHtt-induced mitochondrial defects were implicated in HD pathogenesis. The effect of mHtt could be mediated by transcriptional alterations, by direct interaction with mitochondria, or by both. In the present study, we tested a hypothesis that mHtt directly damages mitochondria. To test this hypothesis, we applied brain cytosolic fraction from YAC128 mice, containing mHtt, to brain non-synaptic and synaptic mitochondria from wild-type mice and assessed mitochondrial respiration with a Clark-type oxygen electrode, membrane potential and Ca2+ uptake capacity with tetraphenylphosphonium (TPP+)- and Ca2+-sensitive electrodes, respectively, and, reactive oxygen species production with Amplex Red assay. The amount of mHtt bound to mitochondria following incubation with mHtt-containing cytosolic fraction was greater than the amount of mHtt bound to brain mitochondria isolated from YAC128 mice. Despite mHtt binding to wild-type mitochondria, no abnormalities in mitochondrial functions were detected. This is consistent with our previous results demonstrating the lack of defects in brain mitochondria isolated from R6/2 and YAC128 mice. This, however, could be because of partial loss of mitochondrially bound mHtt during the isolation procedure. Consequently, we increased the amount of mitochondrially bound mHtt by incubating brain non-synaptic and synaptic mitochondria isolated from YAC128 mice with mHtt-containing cytosolic fraction. Despite the enrichment of YAC128 brain mitochondria with mHtt, mitochondrial functions (respiration, membrane potential, reactive oxygen species production, Ca2+ uptake capacity) remained unchanged. Overall, our results suggest that mHtt does not directly impair mitochondrial functions, arguing against the involvement of this mechanism in HD pathogenesis. Open science badges: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. (Figure presented.).

AB - Although the mechanisms by which mutant huntingtin (mHtt) results in Huntington's disease (HD) remain unclear, mHtt-induced mitochondrial defects were implicated in HD pathogenesis. The effect of mHtt could be mediated by transcriptional alterations, by direct interaction with mitochondria, or by both. In the present study, we tested a hypothesis that mHtt directly damages mitochondria. To test this hypothesis, we applied brain cytosolic fraction from YAC128 mice, containing mHtt, to brain non-synaptic and synaptic mitochondria from wild-type mice and assessed mitochondrial respiration with a Clark-type oxygen electrode, membrane potential and Ca2+ uptake capacity with tetraphenylphosphonium (TPP+)- and Ca2+-sensitive electrodes, respectively, and, reactive oxygen species production with Amplex Red assay. The amount of mHtt bound to mitochondria following incubation with mHtt-containing cytosolic fraction was greater than the amount of mHtt bound to brain mitochondria isolated from YAC128 mice. Despite mHtt binding to wild-type mitochondria, no abnormalities in mitochondrial functions were detected. This is consistent with our previous results demonstrating the lack of defects in brain mitochondria isolated from R6/2 and YAC128 mice. This, however, could be because of partial loss of mitochondrially bound mHtt during the isolation procedure. Consequently, we increased the amount of mitochondrially bound mHtt by incubating brain non-synaptic and synaptic mitochondria isolated from YAC128 mice with mHtt-containing cytosolic fraction. Despite the enrichment of YAC128 brain mitochondria with mHtt, mitochondrial functions (respiration, membrane potential, reactive oxygen species production, Ca2+ uptake capacity) remained unchanged. Overall, our results suggest that mHtt does not directly impair mitochondrial functions, arguing against the involvement of this mechanism in HD pathogenesis. Open science badges: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. (Figure presented.).

KW - calcium

KW - Huntington's disease

KW - mitochondria

KW - mitochondrial membrane potential

KW - reactive oxygen species

KW - respiration

UR - http://www.scopus.com/inward/record.url?scp=85073957292&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85073957292&partnerID=8YFLogxK

U2 - 10.1111/jnc.14852

DO - 10.1111/jnc.14852

M3 - Article

C2 - 31418857

AN - SCOPUS:85073957292

JO - Journal of Neurochemistry

JF - Journal of Neurochemistry

SN - 0022-3042

ER -