Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo: A link between ferritin ferroxidase activity and biological function

Hal Broxmeyer, Scott Cooper, Sonia Levi, Paolo Arosio

Research output: Contribution to journalArticle

61 Citations (Scopus)

Abstract

Human heavy-chain (H-) ferritin muteins obtained by oligonucleotide site-directed mutagenesis, together with wild-type recombinant human H- and light-chain (L-) ferritins, were evaluated for in vitro effects on the suppression of human bone marrow myeloid progenitor cells and for in vivo effects on marrow and splenic myelopoiesis in C3H/HeJ mice. The 10 H-ferritin muteins exhibited alterations of various regions of the molecule, including ones exposed on the outer surface, on the inner cavity, and on the hydrophilic and hydrophobic channels and of the four-α-helix bundle forming the subunit structure. They were stable and were electrophoretically analogous to wild-type H-ferritin. The muteins showed in vitro and in vivo myelosuppressive activity analogous to wild type, except for mutein 222, which was totally inactive and which lacked ferroxidase activity. Recombinant human L-ferritin, devoid of ferroxidase activity, was also inactive as a suppressor. The results demonstrate that H-ferritin myelosuppressive and ferroxidase activities are linked. One possibility is that ferroxidase activity may interfere with the cellular uptake of transferrin iron that is needed for cell proliferation, an interpretation consistent with the presently described ability of hemin to overcome H-ferritin suppressive effects.

Original languageEnglish
Pages (from-to)770-774
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume88
Issue number3
StatePublished - 1991

Fingerprint

Apoferritins
Ceruloplasmin
Ferritins
Site-Directed Mutagenesis
Myelopoiesis
Myeloid Progenitor Cells
Hemin
Inbred C3H Mouse
Transferrin
In Vitro Techniques
Bone Marrow Cells
Iron
Bone Marrow
Cell Proliferation
Light

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{9f82e7fa132a4b8c8d01291597368722,
title = "Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo: A link between ferritin ferroxidase activity and biological function",
abstract = "Human heavy-chain (H-) ferritin muteins obtained by oligonucleotide site-directed mutagenesis, together with wild-type recombinant human H- and light-chain (L-) ferritins, were evaluated for in vitro effects on the suppression of human bone marrow myeloid progenitor cells and for in vivo effects on marrow and splenic myelopoiesis in C3H/HeJ mice. The 10 H-ferritin muteins exhibited alterations of various regions of the molecule, including ones exposed on the outer surface, on the inner cavity, and on the hydrophilic and hydrophobic channels and of the four-α-helix bundle forming the subunit structure. They were stable and were electrophoretically analogous to wild-type H-ferritin. The muteins showed in vitro and in vivo myelosuppressive activity analogous to wild type, except for mutein 222, which was totally inactive and which lacked ferroxidase activity. Recombinant human L-ferritin, devoid of ferroxidase activity, was also inactive as a suppressor. The results demonstrate that H-ferritin myelosuppressive and ferroxidase activities are linked. One possibility is that ferroxidase activity may interfere with the cellular uptake of transferrin iron that is needed for cell proliferation, an interpretation consistent with the presently described ability of hemin to overcome H-ferritin suppressive effects.",
author = "Hal Broxmeyer and Scott Cooper and Sonia Levi and Paolo Arosio",
year = "1991",
language = "English",
volume = "88",
pages = "770--774",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "3",

}

TY - JOUR

T1 - Mutated recombinant human heavy-chain ferritins and myelosuppression in vitro and in vivo

T2 - A link between ferritin ferroxidase activity and biological function

AU - Broxmeyer, Hal

AU - Cooper, Scott

AU - Levi, Sonia

AU - Arosio, Paolo

PY - 1991

Y1 - 1991

N2 - Human heavy-chain (H-) ferritin muteins obtained by oligonucleotide site-directed mutagenesis, together with wild-type recombinant human H- and light-chain (L-) ferritins, were evaluated for in vitro effects on the suppression of human bone marrow myeloid progenitor cells and for in vivo effects on marrow and splenic myelopoiesis in C3H/HeJ mice. The 10 H-ferritin muteins exhibited alterations of various regions of the molecule, including ones exposed on the outer surface, on the inner cavity, and on the hydrophilic and hydrophobic channels and of the four-α-helix bundle forming the subunit structure. They were stable and were electrophoretically analogous to wild-type H-ferritin. The muteins showed in vitro and in vivo myelosuppressive activity analogous to wild type, except for mutein 222, which was totally inactive and which lacked ferroxidase activity. Recombinant human L-ferritin, devoid of ferroxidase activity, was also inactive as a suppressor. The results demonstrate that H-ferritin myelosuppressive and ferroxidase activities are linked. One possibility is that ferroxidase activity may interfere with the cellular uptake of transferrin iron that is needed for cell proliferation, an interpretation consistent with the presently described ability of hemin to overcome H-ferritin suppressive effects.

AB - Human heavy-chain (H-) ferritin muteins obtained by oligonucleotide site-directed mutagenesis, together with wild-type recombinant human H- and light-chain (L-) ferritins, were evaluated for in vitro effects on the suppression of human bone marrow myeloid progenitor cells and for in vivo effects on marrow and splenic myelopoiesis in C3H/HeJ mice. The 10 H-ferritin muteins exhibited alterations of various regions of the molecule, including ones exposed on the outer surface, on the inner cavity, and on the hydrophilic and hydrophobic channels and of the four-α-helix bundle forming the subunit structure. They were stable and were electrophoretically analogous to wild-type H-ferritin. The muteins showed in vitro and in vivo myelosuppressive activity analogous to wild type, except for mutein 222, which was totally inactive and which lacked ferroxidase activity. Recombinant human L-ferritin, devoid of ferroxidase activity, was also inactive as a suppressor. The results demonstrate that H-ferritin myelosuppressive and ferroxidase activities are linked. One possibility is that ferroxidase activity may interfere with the cellular uptake of transferrin iron that is needed for cell proliferation, an interpretation consistent with the presently described ability of hemin to overcome H-ferritin suppressive effects.

UR - http://www.scopus.com/inward/record.url?scp=0026013466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026013466&partnerID=8YFLogxK

M3 - Article

C2 - 1992468

AN - SCOPUS:0026013466

VL - 88

SP - 770

EP - 774

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 3

ER -