NADPH oxidase as a therapeutic target in Alzheimer's disease

Research output: Contribution to journalArticlepeer-review

129 Scopus citations


At present, available treatments for Alzheimer's disease (AD) are largely unable to halt disease progression. Microglia, the resident macrophages in the brain, are strongly implicated in the pathology and progressively degenerative nature of AD. Specifically, microglia are activated in response to both β amyloid (Aβ) and neuronal damage, and can become a chronic source of neurotoxic cytokines and reactive oxygen species (ROS). NADPH oxidase is a multi-subunit enzyme complex responsible for the production of both extracellular and intracellular ROS by microglia. Importantly, NADPH oxidase expression is upregulated in AD and is an essential component of microglia-mediated Aβ neurotoxicity. Activation of microglial NADPH oxidase causes neurotoxicity through two mechanisms: 1) extracellular ROS produced by microglia are directly toxic to neurons; 2) intracellular ROS function as a signaling mechanism in microglia to amplify the production of several pro-inflammatory and neurotoxic cytokines (for example, tumor necrosis factor-α, prostaglandin E2, and interleukin-1β). The following review describes how targeting NADPH oxidase can reduce a broad spectrum of toxic factors (for example, cytokines, ROS, and reactive nitrogen species) to result in inhibition of neuronal damage from two triggers of deleterious microglial activation (Aβ and neuron damage), offering hope in halting the progression of AD.

Original languageEnglish (US)
Article numberS8
JournalBMC Neuroscience
Issue numberSUPPL. 2
StatePublished - Dec 3 2008

ASJC Scopus subject areas

  • Neuroscience(all)
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'NADPH oxidase as a therapeutic target in Alzheimer's disease'. Together they form a unique fingerprint.

Cite this