Neurogenin3 promotes early retinal neurogenesis

Wenxin Ma, Run Tao Yan, Weiming Mao, Shu Zhen Wang

Research output: Contribution to journalArticle

23 Scopus citations


The transcriptional regulatory network governing the establishment of retinal neuron diversity is not well delineated. We report experimental results suggesting proneural gene neurogenin3 (ngn3) participating in this regulatory network. Retinal expression of chick ngn3 was confined to early neurogenesis. Overexpression of ngn3 in chick retina reduced cell proliferation and expanded the population of ganglion cells into the territory normally occupied by amacrine cells. Ngn3 overexpression altered the expression of a number of regulatory genes, including ash1, ath3, ath5, chx10, neuroD, ngn1, ngn2, and NSCL1. Early gene ngn1 was induced, but ash1, ngn2, ath3, and chx10, whose expressions persist through later phases of neurogenesis, were down-regulated. Expression of ath5 was up-regulated at the locale corresponding to young ganglion cells, but was down-regulated at the locale corresponding to progenitor cells. These results suggest that ngn3 regulates retinal neurogenesis by inducing regulatory genes for early-born neurons and repressing those for later-born cells.

Original languageEnglish (US)
Pages (from-to)187-198
Number of pages12
JournalMolecular and Cellular Neuroscience
Issue number2
StatePublished - Feb 1 2009
Externally publishedYes


  • Retinal ganglion cells
  • Retinal neurogenesis
  • Transcriptional regulation
  • bHLH proneural gene

ASJC Scopus subject areas

  • Molecular Biology
  • Cellular and Molecular Neuroscience
  • Cell Biology

Fingerprint Dive into the research topics of 'Neurogenin3 promotes early retinal neurogenesis'. Together they form a unique fingerprint.

  • Cite this