Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4

Louis Pelus, Huimin Bian, Andrew G. King, Seiji Fukuda

Research output: Contribution to journalArticle

146 Citations (Scopus)

Abstract

Mobilized peripheral blood stem cells (PBSCs) are widely used for transplantation, but mechanisms mediating their release from marrow are poorly understood. We previously demonstrated that the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4 rapidly mobilize PBSC equivalent to granulocyte colony-stimulating factor (G-CSF) and are synergistic with G-CSF. We now show that mobilization by GROβ/GROβT and G-CSF, alone or in combination, requires polymorphonuclear neutrophil (PMN)-derived proteases. Mobilization induced by GROβ/GROβT is associated with elevated levels of plasma and marrow matrix metalloproteinase 9 (MMP-9) and mobilization and MMP-9 are absent in neutrophil-depleted mice. G-CSF mobilization correlates with elevated neutrophil elastase (NE), cathepsin G (CG), and MMP-9 levels within marrow and is partially blocked by either anti-MMP-9 or the NE inhibitor MeOSuc-Ala-Ala-Pro-Val-CMK. Mobilization and protease accumulation are absent in neutrophil-depleted mice. Synergistic PBSC mobilization observed when G-CSF and GROβ/GROβT are combined correlates with a synergistic rise in the level of plasma MMP-9, reduction in marrow NE, CG, and MMP-9 levels, and a coincident increase in peripheral blood PMNs but decrease in marrow PMNs compared to G-CSF. Synergistic mobilization is completely blocked by anti-MMP-9 but not MeOSuc-Ala-Ala-Pro-Val-CMK and absent in MMP-9-deficient or PMN-depleted mice. Our results indicate that PMNs are a common target for G-CSF and GROβ/GROβT-mediated PBSC mobilization and, importantly, that synergistic mobilization by G-CSF plus GROβ/GROβT is mediated by PMN-derived plasma MMP-9.

Original languageEnglish
Pages (from-to)110-119
Number of pages10
JournalBlood
Volume103
Issue number1
DOIs
StatePublished - Jan 1 2004

Fingerprint

Chemokine CXCL2
Matrix Metalloproteinase 9
Granulocyte Colony-Stimulating Factor
Hematopoietic Stem Cells
Chemokines
Neutrophils
Stem cells
Blood
Bone Marrow
Cathepsin G
Hematopoietic Stem Cell Mobilization
Leukocyte Elastase
Plasmas
Peptide Hydrolases
Secretory Proteinase Inhibitory Proteins
Transplantation

ASJC Scopus subject areas

  • Hematology

Cite this

Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4. / Pelus, Louis; Bian, Huimin; King, Andrew G.; Fukuda, Seiji.

In: Blood, Vol. 103, No. 1, 01.01.2004, p. 110-119.

Research output: Contribution to journalArticle

@article{85ae4c1461d44f21b1b74c0f6597c0ce,
title = "Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4",
abstract = "Mobilized peripheral blood stem cells (PBSCs) are widely used for transplantation, but mechanisms mediating their release from marrow are poorly understood. We previously demonstrated that the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4 rapidly mobilize PBSC equivalent to granulocyte colony-stimulating factor (G-CSF) and are synergistic with G-CSF. We now show that mobilization by GROβ/GROβT and G-CSF, alone or in combination, requires polymorphonuclear neutrophil (PMN)-derived proteases. Mobilization induced by GROβ/GROβT is associated with elevated levels of plasma and marrow matrix metalloproteinase 9 (MMP-9) and mobilization and MMP-9 are absent in neutrophil-depleted mice. G-CSF mobilization correlates with elevated neutrophil elastase (NE), cathepsin G (CG), and MMP-9 levels within marrow and is partially blocked by either anti-MMP-9 or the NE inhibitor MeOSuc-Ala-Ala-Pro-Val-CMK. Mobilization and protease accumulation are absent in neutrophil-depleted mice. Synergistic PBSC mobilization observed when G-CSF and GROβ/GROβT are combined correlates with a synergistic rise in the level of plasma MMP-9, reduction in marrow NE, CG, and MMP-9 levels, and a coincident increase in peripheral blood PMNs but decrease in marrow PMNs compared to G-CSF. Synergistic mobilization is completely blocked by anti-MMP-9 but not MeOSuc-Ala-Ala-Pro-Val-CMK and absent in MMP-9-deficient or PMN-depleted mice. Our results indicate that PMNs are a common target for G-CSF and GROβ/GROβT-mediated PBSC mobilization and, importantly, that synergistic mobilization by G-CSF plus GROβ/GROβT is mediated by PMN-derived plasma MMP-9.",
author = "Louis Pelus and Huimin Bian and King, {Andrew G.} and Seiji Fukuda",
year = "2004",
month = "1",
day = "1",
doi = "10.1182/blood-2003-04-1115",
language = "English",
volume = "103",
pages = "110--119",
journal = "Blood",
issn = "0006-4971",
publisher = "American Society of Hematology",
number = "1",

}

TY - JOUR

T1 - Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4

AU - Pelus, Louis

AU - Bian, Huimin

AU - King, Andrew G.

AU - Fukuda, Seiji

PY - 2004/1/1

Y1 - 2004/1/1

N2 - Mobilized peripheral blood stem cells (PBSCs) are widely used for transplantation, but mechanisms mediating their release from marrow are poorly understood. We previously demonstrated that the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4 rapidly mobilize PBSC equivalent to granulocyte colony-stimulating factor (G-CSF) and are synergistic with G-CSF. We now show that mobilization by GROβ/GROβT and G-CSF, alone or in combination, requires polymorphonuclear neutrophil (PMN)-derived proteases. Mobilization induced by GROβ/GROβT is associated with elevated levels of plasma and marrow matrix metalloproteinase 9 (MMP-9) and mobilization and MMP-9 are absent in neutrophil-depleted mice. G-CSF mobilization correlates with elevated neutrophil elastase (NE), cathepsin G (CG), and MMP-9 levels within marrow and is partially blocked by either anti-MMP-9 or the NE inhibitor MeOSuc-Ala-Ala-Pro-Val-CMK. Mobilization and protease accumulation are absent in neutrophil-depleted mice. Synergistic PBSC mobilization observed when G-CSF and GROβ/GROβT are combined correlates with a synergistic rise in the level of plasma MMP-9, reduction in marrow NE, CG, and MMP-9 levels, and a coincident increase in peripheral blood PMNs but decrease in marrow PMNs compared to G-CSF. Synergistic mobilization is completely blocked by anti-MMP-9 but not MeOSuc-Ala-Ala-Pro-Val-CMK and absent in MMP-9-deficient or PMN-depleted mice. Our results indicate that PMNs are a common target for G-CSF and GROβ/GROβT-mediated PBSC mobilization and, importantly, that synergistic mobilization by G-CSF plus GROβ/GROβT is mediated by PMN-derived plasma MMP-9.

AB - Mobilized peripheral blood stem cells (PBSCs) are widely used for transplantation, but mechanisms mediating their release from marrow are poorly understood. We previously demonstrated that the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4 rapidly mobilize PBSC equivalent to granulocyte colony-stimulating factor (G-CSF) and are synergistic with G-CSF. We now show that mobilization by GROβ/GROβT and G-CSF, alone or in combination, requires polymorphonuclear neutrophil (PMN)-derived proteases. Mobilization induced by GROβ/GROβT is associated with elevated levels of plasma and marrow matrix metalloproteinase 9 (MMP-9) and mobilization and MMP-9 are absent in neutrophil-depleted mice. G-CSF mobilization correlates with elevated neutrophil elastase (NE), cathepsin G (CG), and MMP-9 levels within marrow and is partially blocked by either anti-MMP-9 or the NE inhibitor MeOSuc-Ala-Ala-Pro-Val-CMK. Mobilization and protease accumulation are absent in neutrophil-depleted mice. Synergistic PBSC mobilization observed when G-CSF and GROβ/GROβT are combined correlates with a synergistic rise in the level of plasma MMP-9, reduction in marrow NE, CG, and MMP-9 levels, and a coincident increase in peripheral blood PMNs but decrease in marrow PMNs compared to G-CSF. Synergistic mobilization is completely blocked by anti-MMP-9 but not MeOSuc-Ala-Ala-Pro-Val-CMK and absent in MMP-9-deficient or PMN-depleted mice. Our results indicate that PMNs are a common target for G-CSF and GROβ/GROβT-mediated PBSC mobilization and, importantly, that synergistic mobilization by G-CSF plus GROβ/GROβT is mediated by PMN-derived plasma MMP-9.

UR - http://www.scopus.com/inward/record.url?scp=0348227697&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0348227697&partnerID=8YFLogxK

U2 - 10.1182/blood-2003-04-1115

DO - 10.1182/blood-2003-04-1115

M3 - Article

C2 - 12958067

AN - SCOPUS:0348227697

VL - 103

SP - 110

EP - 119

JO - Blood

JF - Blood

SN - 0006-4971

IS - 1

ER -