Oleic acid supplementation reduces oxidant-mediated dysfunction of cultured porcine pulmonary artery endothelial cells

C. Michael Hart, Sharon Andreoli, Carolyn E. Patterson, Joe G N Garcia

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

We have previously shown that supplementing cultured porcine pulmonary artery endothelial cells (PAEC) with exogenous oleic acid (18:1ω9) alters the fatty acid composition of the cells and reduces oxidant-mediated cytotoxicity. Because the mechanisms by which lipid alterations modulate oxidant susceptibility have not been defined, the ability of 18:1 to reduce hydrogen peroxide (H2O2)-mediated PAEC dysfunction was evaluated. PAEC monolayers on polycarbonate filters were incubated for 3 h in maintenance medium supplemented with either 0.1 mM 18.1 in ethanol vehicle (ETOH) or with an equivalent volume of vehicle alone. Twentyfour hours later monolayers were treated for 30 min with 50 or 100 μM H2O2 in Hanks' balanced salt solution (HBSS) or with HBSS alone (nonoxidant control). As a functional index of PAEC monolayer integrity, the permeability of monolayers to albumin was then measured for 3 h. Treatment with 100 μM H2O2 caused cytotoxicity and progressive increases in PAEC monolayer permeability that were attenuated by 18:1 supplementation, whereas 50 μM H2O2 caused only a transient increase in permeability without cytotoxicity. Supplementation with 18:1 also attenuated H2O2-induced reductions in PAEC adenosine triphosphate (ATP) content and disruption of PAEC microfilament architecture. The ATP content of PAEC monolayers was reversibly reduced in the absence of oxidant stress by incubation with glucose-depleted medium containing deoxyglucose and antimycin A. Metabolic inhibitor-induced ATP depletion increased monolayer permeability and altered cytoskeletal architecture, alterations that resolved during recovery of PAEC ATP content. These results demonstrate that ATP depletion plays a critical role in barrier dysfunction and suggests that the ability of 18:1 to reduce oxidant-mediated PAEC dysfunction and injury may relate directly to its ability to preserve PAEC ATP content.

Original languageEnglish
Pages (from-to)24-34
Number of pages11
JournalJournal of Cellular Physiology
Volume156
Issue number1
StatePublished - Jul 1993

Fingerprint

Endothelial cells
Oleic Acid
Oxidants
Pulmonary Artery
Swine
Endothelial Cells
Monolayers
Adenosine Triphosphate
Permeability
Cytotoxicity
polycarbonate
Antimycin A
Deoxyglucose
Actin Cytoskeleton
Hydrogen Peroxide
Albumins
Ethanol
Fatty Acids
Maintenance
Lipids

ASJC Scopus subject areas

  • Cell Biology
  • Clinical Biochemistry
  • Physiology

Cite this

Oleic acid supplementation reduces oxidant-mediated dysfunction of cultured porcine pulmonary artery endothelial cells. / Hart, C. Michael; Andreoli, Sharon; Patterson, Carolyn E.; Garcia, Joe G N.

In: Journal of Cellular Physiology, Vol. 156, No. 1, 07.1993, p. 24-34.

Research output: Contribution to journalArticle

@article{09ae07238ce74f8dae3a5dbc2d8d2d1f,
title = "Oleic acid supplementation reduces oxidant-mediated dysfunction of cultured porcine pulmonary artery endothelial cells",
abstract = "We have previously shown that supplementing cultured porcine pulmonary artery endothelial cells (PAEC) with exogenous oleic acid (18:1ω9) alters the fatty acid composition of the cells and reduces oxidant-mediated cytotoxicity. Because the mechanisms by which lipid alterations modulate oxidant susceptibility have not been defined, the ability of 18:1 to reduce hydrogen peroxide (H2O2)-mediated PAEC dysfunction was evaluated. PAEC monolayers on polycarbonate filters were incubated for 3 h in maintenance medium supplemented with either 0.1 mM 18.1 in ethanol vehicle (ETOH) or with an equivalent volume of vehicle alone. Twentyfour hours later monolayers were treated for 30 min with 50 or 100 μM H2O2 in Hanks' balanced salt solution (HBSS) or with HBSS alone (nonoxidant control). As a functional index of PAEC monolayer integrity, the permeability of monolayers to albumin was then measured for 3 h. Treatment with 100 μM H2O2 caused cytotoxicity and progressive increases in PAEC monolayer permeability that were attenuated by 18:1 supplementation, whereas 50 μM H2O2 caused only a transient increase in permeability without cytotoxicity. Supplementation with 18:1 also attenuated H2O2-induced reductions in PAEC adenosine triphosphate (ATP) content and disruption of PAEC microfilament architecture. The ATP content of PAEC monolayers was reversibly reduced in the absence of oxidant stress by incubation with glucose-depleted medium containing deoxyglucose and antimycin A. Metabolic inhibitor-induced ATP depletion increased monolayer permeability and altered cytoskeletal architecture, alterations that resolved during recovery of PAEC ATP content. These results demonstrate that ATP depletion plays a critical role in barrier dysfunction and suggests that the ability of 18:1 to reduce oxidant-mediated PAEC dysfunction and injury may relate directly to its ability to preserve PAEC ATP content.",
author = "Hart, {C. Michael} and Sharon Andreoli and Patterson, {Carolyn E.} and Garcia, {Joe G N}",
year = "1993",
month = "7",
language = "English",
volume = "156",
pages = "24--34",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Oleic acid supplementation reduces oxidant-mediated dysfunction of cultured porcine pulmonary artery endothelial cells

AU - Hart, C. Michael

AU - Andreoli, Sharon

AU - Patterson, Carolyn E.

AU - Garcia, Joe G N

PY - 1993/7

Y1 - 1993/7

N2 - We have previously shown that supplementing cultured porcine pulmonary artery endothelial cells (PAEC) with exogenous oleic acid (18:1ω9) alters the fatty acid composition of the cells and reduces oxidant-mediated cytotoxicity. Because the mechanisms by which lipid alterations modulate oxidant susceptibility have not been defined, the ability of 18:1 to reduce hydrogen peroxide (H2O2)-mediated PAEC dysfunction was evaluated. PAEC monolayers on polycarbonate filters were incubated for 3 h in maintenance medium supplemented with either 0.1 mM 18.1 in ethanol vehicle (ETOH) or with an equivalent volume of vehicle alone. Twentyfour hours later monolayers were treated for 30 min with 50 or 100 μM H2O2 in Hanks' balanced salt solution (HBSS) or with HBSS alone (nonoxidant control). As a functional index of PAEC monolayer integrity, the permeability of monolayers to albumin was then measured for 3 h. Treatment with 100 μM H2O2 caused cytotoxicity and progressive increases in PAEC monolayer permeability that were attenuated by 18:1 supplementation, whereas 50 μM H2O2 caused only a transient increase in permeability without cytotoxicity. Supplementation with 18:1 also attenuated H2O2-induced reductions in PAEC adenosine triphosphate (ATP) content and disruption of PAEC microfilament architecture. The ATP content of PAEC monolayers was reversibly reduced in the absence of oxidant stress by incubation with glucose-depleted medium containing deoxyglucose and antimycin A. Metabolic inhibitor-induced ATP depletion increased monolayer permeability and altered cytoskeletal architecture, alterations that resolved during recovery of PAEC ATP content. These results demonstrate that ATP depletion plays a critical role in barrier dysfunction and suggests that the ability of 18:1 to reduce oxidant-mediated PAEC dysfunction and injury may relate directly to its ability to preserve PAEC ATP content.

AB - We have previously shown that supplementing cultured porcine pulmonary artery endothelial cells (PAEC) with exogenous oleic acid (18:1ω9) alters the fatty acid composition of the cells and reduces oxidant-mediated cytotoxicity. Because the mechanisms by which lipid alterations modulate oxidant susceptibility have not been defined, the ability of 18:1 to reduce hydrogen peroxide (H2O2)-mediated PAEC dysfunction was evaluated. PAEC monolayers on polycarbonate filters were incubated for 3 h in maintenance medium supplemented with either 0.1 mM 18.1 in ethanol vehicle (ETOH) or with an equivalent volume of vehicle alone. Twentyfour hours later monolayers were treated for 30 min with 50 or 100 μM H2O2 in Hanks' balanced salt solution (HBSS) or with HBSS alone (nonoxidant control). As a functional index of PAEC monolayer integrity, the permeability of monolayers to albumin was then measured for 3 h. Treatment with 100 μM H2O2 caused cytotoxicity and progressive increases in PAEC monolayer permeability that were attenuated by 18:1 supplementation, whereas 50 μM H2O2 caused only a transient increase in permeability without cytotoxicity. Supplementation with 18:1 also attenuated H2O2-induced reductions in PAEC adenosine triphosphate (ATP) content and disruption of PAEC microfilament architecture. The ATP content of PAEC monolayers was reversibly reduced in the absence of oxidant stress by incubation with glucose-depleted medium containing deoxyglucose and antimycin A. Metabolic inhibitor-induced ATP depletion increased monolayer permeability and altered cytoskeletal architecture, alterations that resolved during recovery of PAEC ATP content. These results demonstrate that ATP depletion plays a critical role in barrier dysfunction and suggests that the ability of 18:1 to reduce oxidant-mediated PAEC dysfunction and injury may relate directly to its ability to preserve PAEC ATP content.

UR - http://www.scopus.com/inward/record.url?scp=0027296782&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027296782&partnerID=8YFLogxK

M3 - Article

C2 - 8314859

AN - SCOPUS:0027296782

VL - 156

SP - 24

EP - 34

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

IS - 1

ER -