Pathophysiology-Based treatment of idiopathic calcium kidney stones

Fredric L. Coe, Andrew Evan, Elaine Worcester

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Idiopathic calcium oxalate (CaOx) stone-formers (ICSFs) differ from patients who make idiopathic calcium phosphate (CaP) stones (IPSFs). ICSFs, but not IPSFs, form their stones as overgrowths on interstitial apatite plaque; the amount of plaque covering papillary surface is positively correlated with urine calcium excretion and inversely with urine volume. The amount of plaque predicts the number of recurrent stones. The initial crystal overgrowth on plaque is CaP, although the stone is mainly composed of CaOx, meaning that lowering supersaturation (SS) for CaOx and CaP is important for CaOx stone prevention. IPSFs, unlike ICSFs, have apatite crystal deposits in inner medullary collecting ducts, which are associated with interstitial scarring. ICSFs and IPSFs have idiopathic hypercalciuria, which is due to decreased tubule calcium reabsorption, but sites of abnormal reabsorption may differ. Decreased reabsorption in proximal tubules (PTs) delivers more calcium to the thick ascending limb (TAL), where increased calcium reabsorption can load the interstitium, leading to plaque formation. The site of abnormal reabsorption in IPSFs may be the TAL, where an associated defect in bicarbonate reabsorption could produce the higher urine pH characteristic of IPSFs. Preventive treatment with fluid intake, protein and sodium restriction, and thiazide will be effective in ICSFs and IPSFs by decreasing urine calcium concentration and CaOx and CaP SS and may also decrease plaque formation by increased PT calcium reabsorption. Citrate may be detrimental for IPSFs if urine pH rises greatly, increasing CaP SS. Future trials should examine the question of appropriate treatment for IPSFs.

Original languageEnglish (US)
Pages (from-to)2083-2092
Number of pages10
JournalClinical Journal of the American Society of Nephrology
Volume6
Issue number8
DOIs
StatePublished - Aug 1 2011

Fingerprint

Kidney Calculi
Calcium Oxalate
Calcium
Urine
Apatites
Therapeutics
Extremities
Thiazides
Hypercalciuria
Bicarbonates
Citric Acid
Cicatrix
Sodium
calcium phosphate
Proteins

ASJC Scopus subject areas

  • Epidemiology
  • Critical Care and Intensive Care Medicine
  • Nephrology
  • Transplantation

Cite this

Pathophysiology-Based treatment of idiopathic calcium kidney stones. / Coe, Fredric L.; Evan, Andrew; Worcester, Elaine.

In: Clinical Journal of the American Society of Nephrology, Vol. 6, No. 8, 01.08.2011, p. 2083-2092.

Research output: Contribution to journalArticle

@article{43733e3aebf04c08b9523100bd509c70,
title = "Pathophysiology-Based treatment of idiopathic calcium kidney stones",
abstract = "Idiopathic calcium oxalate (CaOx) stone-formers (ICSFs) differ from patients who make idiopathic calcium phosphate (CaP) stones (IPSFs). ICSFs, but not IPSFs, form their stones as overgrowths on interstitial apatite plaque; the amount of plaque covering papillary surface is positively correlated with urine calcium excretion and inversely with urine volume. The amount of plaque predicts the number of recurrent stones. The initial crystal overgrowth on plaque is CaP, although the stone is mainly composed of CaOx, meaning that lowering supersaturation (SS) for CaOx and CaP is important for CaOx stone prevention. IPSFs, unlike ICSFs, have apatite crystal deposits in inner medullary collecting ducts, which are associated with interstitial scarring. ICSFs and IPSFs have idiopathic hypercalciuria, which is due to decreased tubule calcium reabsorption, but sites of abnormal reabsorption may differ. Decreased reabsorption in proximal tubules (PTs) delivers more calcium to the thick ascending limb (TAL), where increased calcium reabsorption can load the interstitium, leading to plaque formation. The site of abnormal reabsorption in IPSFs may be the TAL, where an associated defect in bicarbonate reabsorption could produce the higher urine pH characteristic of IPSFs. Preventive treatment with fluid intake, protein and sodium restriction, and thiazide will be effective in ICSFs and IPSFs by decreasing urine calcium concentration and CaOx and CaP SS and may also decrease plaque formation by increased PT calcium reabsorption. Citrate may be detrimental for IPSFs if urine pH rises greatly, increasing CaP SS. Future trials should examine the question of appropriate treatment for IPSFs.",
author = "Coe, {Fredric L.} and Andrew Evan and Elaine Worcester",
year = "2011",
month = "8",
day = "1",
doi = "10.2215/CJN.11321210",
language = "English (US)",
volume = "6",
pages = "2083--2092",
journal = "Clinical journal of the American Society of Nephrology : CJASN",
issn = "1555-9041",
publisher = "American Society of Nephrology",
number = "8",

}

TY - JOUR

T1 - Pathophysiology-Based treatment of idiopathic calcium kidney stones

AU - Coe, Fredric L.

AU - Evan, Andrew

AU - Worcester, Elaine

PY - 2011/8/1

Y1 - 2011/8/1

N2 - Idiopathic calcium oxalate (CaOx) stone-formers (ICSFs) differ from patients who make idiopathic calcium phosphate (CaP) stones (IPSFs). ICSFs, but not IPSFs, form their stones as overgrowths on interstitial apatite plaque; the amount of plaque covering papillary surface is positively correlated with urine calcium excretion and inversely with urine volume. The amount of plaque predicts the number of recurrent stones. The initial crystal overgrowth on plaque is CaP, although the stone is mainly composed of CaOx, meaning that lowering supersaturation (SS) for CaOx and CaP is important for CaOx stone prevention. IPSFs, unlike ICSFs, have apatite crystal deposits in inner medullary collecting ducts, which are associated with interstitial scarring. ICSFs and IPSFs have idiopathic hypercalciuria, which is due to decreased tubule calcium reabsorption, but sites of abnormal reabsorption may differ. Decreased reabsorption in proximal tubules (PTs) delivers more calcium to the thick ascending limb (TAL), where increased calcium reabsorption can load the interstitium, leading to plaque formation. The site of abnormal reabsorption in IPSFs may be the TAL, where an associated defect in bicarbonate reabsorption could produce the higher urine pH characteristic of IPSFs. Preventive treatment with fluid intake, protein and sodium restriction, and thiazide will be effective in ICSFs and IPSFs by decreasing urine calcium concentration and CaOx and CaP SS and may also decrease plaque formation by increased PT calcium reabsorption. Citrate may be detrimental for IPSFs if urine pH rises greatly, increasing CaP SS. Future trials should examine the question of appropriate treatment for IPSFs.

AB - Idiopathic calcium oxalate (CaOx) stone-formers (ICSFs) differ from patients who make idiopathic calcium phosphate (CaP) stones (IPSFs). ICSFs, but not IPSFs, form their stones as overgrowths on interstitial apatite plaque; the amount of plaque covering papillary surface is positively correlated with urine calcium excretion and inversely with urine volume. The amount of plaque predicts the number of recurrent stones. The initial crystal overgrowth on plaque is CaP, although the stone is mainly composed of CaOx, meaning that lowering supersaturation (SS) for CaOx and CaP is important for CaOx stone prevention. IPSFs, unlike ICSFs, have apatite crystal deposits in inner medullary collecting ducts, which are associated with interstitial scarring. ICSFs and IPSFs have idiopathic hypercalciuria, which is due to decreased tubule calcium reabsorption, but sites of abnormal reabsorption may differ. Decreased reabsorption in proximal tubules (PTs) delivers more calcium to the thick ascending limb (TAL), where increased calcium reabsorption can load the interstitium, leading to plaque formation. The site of abnormal reabsorption in IPSFs may be the TAL, where an associated defect in bicarbonate reabsorption could produce the higher urine pH characteristic of IPSFs. Preventive treatment with fluid intake, protein and sodium restriction, and thiazide will be effective in ICSFs and IPSFs by decreasing urine calcium concentration and CaOx and CaP SS and may also decrease plaque formation by increased PT calcium reabsorption. Citrate may be detrimental for IPSFs if urine pH rises greatly, increasing CaP SS. Future trials should examine the question of appropriate treatment for IPSFs.

UR - http://www.scopus.com/inward/record.url?scp=80051556514&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051556514&partnerID=8YFLogxK

U2 - 10.2215/CJN.11321210

DO - 10.2215/CJN.11321210

M3 - Article

C2 - 21825103

AN - SCOPUS:80051556514

VL - 6

SP - 2083

EP - 2092

JO - Clinical journal of the American Society of Nephrology : CJASN

JF - Clinical journal of the American Society of Nephrology : CJASN

SN - 1555-9041

IS - 8

ER -