Pathophysiology of acute kidney injury

Research output: Contribution to journalArticle

307 Citations (Scopus)

Abstract

Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.

Original languageEnglish
Pages (from-to)1303-1353
Number of pages51
JournalComprehensive Physiology
Volume2
Issue number2
DOIs
StatePublished - Apr 2012

Fingerprint

Acute Kidney Injury
Renal Circulation
Wounds and Injuries
Glomerular Filtration Rate
Chronic Renal Insufficiency
Kidney
Nephrology
Nephrons
Vasodilator Agents
Renal Insufficiency
Regeneration
Early Diagnosis
Referral and Consultation
Ischemia
Extremities
Biomarkers
Inflammation
Mortality
Therapeutics

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

Pathophysiology of acute kidney injury. / Basile, David; Anderson, Melissa; Sutton, Timothy.

In: Comprehensive Physiology, Vol. 2, No. 2, 04.2012, p. 1303-1353.

Research output: Contribution to journalArticle

@article{9af70540c4b2459a8809a7101a73402d,
title = "Pathophysiology of acute kidney injury",
abstract = "Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.",
author = "David Basile and Melissa Anderson and Timothy Sutton",
year = "2012",
month = "4",
doi = "10.1002/cphy.c110041",
language = "English",
volume = "2",
pages = "1303--1353",
journal = "Comprehensive Physiology",
issn = "2040-4603",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Pathophysiology of acute kidney injury

AU - Basile, David

AU - Anderson, Melissa

AU - Sutton, Timothy

PY - 2012/4

Y1 - 2012/4

N2 - Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.

AB - Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.

UR - http://www.scopus.com/inward/record.url?scp=84862216992&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862216992&partnerID=8YFLogxK

U2 - 10.1002/cphy.c110041

DO - 10.1002/cphy.c110041

M3 - Article

C2 - 23798302

AN - SCOPUS:84862216992

VL - 2

SP - 1303

EP - 1353

JO - Comprehensive Physiology

JF - Comprehensive Physiology

SN - 2040-4603

IS - 2

ER -