Peptidergic agonists of activity-dependent neurotrophic factor protect against prenatal alcohol-induced neural tube defects and serotonin neuron loss

Feng Zhou, Yuan Fang, Charles Goodlett

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Introduction: Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods: Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results: Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in the caudal raphe. Conclusions: These findings further support the potential usefulness of these peptides for therapeutic interventions in pregnancies at risk for alcohol-induced developmental deficits. Notably, the ascending 5-HT projections of the rostral raphe have profound effects in regulating forebrain development and function, and the descending 5-HT projections of the caudal raphe are critical for regulating respiration. Protection of the rostral 5-HT-system may help prevent structural and functional deficits linked to abnormal forebrain development, and protection of the caudal systems may also reduce the increased risk for sudden infant death syndrome associated with prenatal alcohol exposure.

Original languageEnglish
Pages (from-to)1361-1371
Number of pages11
JournalAlcoholism: Clinical and Experimental Research
Volume32
Issue number8
DOIs
StatePublished - Aug 2008

Fingerprint

Neural Tube Defects
Neurons
Serotonin
Alcohols
Defects
Brain
Canals
Prosencephalon
activity-dependent neurotrophic factor
Peptides
Dams
Brain Stem
Neurulation
Maternal Exposure
Rhombencephalon
Neural Tube
Raphe Nuclei
Sudden Infant Death
Nerve Growth Factors
Nutrition

Keywords

  • Activity-Dependent Neuroprotective Peptide
  • Dysraphia
  • Fetal Alcohol Syndrome
  • Neural Tube Defect
  • Neurotrophic Factor

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Toxicology

Cite this

@article{842e469b3c134c538400eba8190fe8fa,
title = "Peptidergic agonists of activity-dependent neurotrophic factor protect against prenatal alcohol-induced neural tube defects and serotonin neuron loss",
abstract = "Introduction: Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods: Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results: Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in the caudal raphe. Conclusions: These findings further support the potential usefulness of these peptides for therapeutic interventions in pregnancies at risk for alcohol-induced developmental deficits. Notably, the ascending 5-HT projections of the rostral raphe have profound effects in regulating forebrain development and function, and the descending 5-HT projections of the caudal raphe are critical for regulating respiration. Protection of the rostral 5-HT-system may help prevent structural and functional deficits linked to abnormal forebrain development, and protection of the caudal systems may also reduce the increased risk for sudden infant death syndrome associated with prenatal alcohol exposure.",
keywords = "Activity-Dependent Neuroprotective Peptide, Dysraphia, Fetal Alcohol Syndrome, Neural Tube Defect, Neurotrophic Factor",
author = "Feng Zhou and Yuan Fang and Charles Goodlett",
year = "2008",
month = "8",
doi = "10.1111/j.1530-0277.2008.00722.x",
language = "English",
volume = "32",
pages = "1361--1371",
journal = "Alcoholism: Clinical and Experimental Research",
issn = "0145-6008",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Peptidergic agonists of activity-dependent neurotrophic factor protect against prenatal alcohol-induced neural tube defects and serotonin neuron loss

AU - Zhou, Feng

AU - Fang, Yuan

AU - Goodlett, Charles

PY - 2008/8

Y1 - 2008/8

N2 - Introduction: Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods: Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results: Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in the caudal raphe. Conclusions: These findings further support the potential usefulness of these peptides for therapeutic interventions in pregnancies at risk for alcohol-induced developmental deficits. Notably, the ascending 5-HT projections of the rostral raphe have profound effects in regulating forebrain development and function, and the descending 5-HT projections of the caudal raphe are critical for regulating respiration. Protection of the rostral 5-HT-system may help prevent structural and functional deficits linked to abnormal forebrain development, and protection of the caudal systems may also reduce the increased risk for sudden infant death syndrome associated with prenatal alcohol exposure.

AB - Introduction: Prenatal alcohol exposure via maternal liquid diet consumption by C57BL/6 (B6) mice causes conspicuous midline neural tube deficit (dysraphia) and disruption of genesis and development of serotonin (5-HT) neurons in the raphe nuclei, together with brain growth retardation. The current study tested the hypothesis that concurrent treatment with either an activity-dependent neurotrophic factor (ADNF) agonist peptide [SALLRSIPA, (SAL)] or an activity-dependent neurotrophic protein (ADNP) agonist peptide [NAPVSIPQ, (NAP)] would protect against these alcohol-induced deficits in brain development. Methods: Timed-pregnant B6 dams consumed alcohol from embryonic day 7 (E7, before the onset of neurulation) until E15. Fetuses were obtained on E15 and brain sections processed for 5-HT immunocytochemistry, for evaluation of morphologic development of the brainstem raphe and its 5-HT neurons. Additional groups were treated either with SAL or NAP daily from E7 to E15 to assess the potential protective effects of these peptides. Measures of incomplete occlusion of the ventral canal and the frequency and extent of the openings in the rhombencephalon were obtained to assess fetal dysraphia. Counts of 5-HT-immunostained neurons were also obtained in the rostral and caudal raphe. Results: Prenatal alcohol exposure resulted in abnormal openings along the midline and delayed closure of ventral canal in the brainstem. This dysraphia was associated with reductions in the number of 5-HT neurons both in the rostral raphe nuclei (that gives rise to ascending 5-HT projections) and in the caudal raphe (that gives rise to the descending 5-HT projections). Concurrent treatment of the alcohol-consuming dams with SAL prevented dysraphia and protected against the alcohol-induced reductions in 5-HT neurons in both the rostral and caudal raphe. NAP was less effective in protecting against dysraphia and did not protect against 5-HT loss in the rostral raphe, but did protect against loss in the caudal raphe. Conclusions: These findings further support the potential usefulness of these peptides for therapeutic interventions in pregnancies at risk for alcohol-induced developmental deficits. Notably, the ascending 5-HT projections of the rostral raphe have profound effects in regulating forebrain development and function, and the descending 5-HT projections of the caudal raphe are critical for regulating respiration. Protection of the rostral 5-HT-system may help prevent structural and functional deficits linked to abnormal forebrain development, and protection of the caudal systems may also reduce the increased risk for sudden infant death syndrome associated with prenatal alcohol exposure.

KW - Activity-Dependent Neuroprotective Peptide

KW - Dysraphia

KW - Fetal Alcohol Syndrome

KW - Neural Tube Defect

KW - Neurotrophic Factor

UR - http://www.scopus.com/inward/record.url?scp=48749118196&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48749118196&partnerID=8YFLogxK

U2 - 10.1111/j.1530-0277.2008.00722.x

DO - 10.1111/j.1530-0277.2008.00722.x

M3 - Article

VL - 32

SP - 1361

EP - 1371

JO - Alcoholism: Clinical and Experimental Research

JF - Alcoholism: Clinical and Experimental Research

SN - 0145-6008

IS - 8

ER -