Persistence of human multilineage, self-renewing lymphohematopoietic stem cells in chimeric sheep

E. F. Srour, E. D. Zanjani, K. Cornetta, C. M. Traycoff, A. W. Flake, M. Hedrick, J. E. Brandt, T. Leemhuis, R. Hoffman

Research output: Contribution to journalArticle

99 Scopus citations


We have previously reported the ability of uncharacterized human bone marrow (BM) cells to engraft into preimmune fetal sheep, thereby creating sheep-human chimera suitable for in vivo examination of the properties of human hematopoietic stem cells (HSC). Adult human bone marrow CD34+ HLA-DR- cells have been extensively characterized in vitro and have been demonstrated to contain a number of primitive hematopoietic progenitor cells (PHPC). However, the capacity of such highly purified populations of human marrow CD34+ HLA-DR- cells to undergo in vivo self-renewal and multipotential lymphohematopoietic differentiation has not been previously demonstrated. To achieve that, human CD34+ HLA-DR- cells were transplanted in utero into immunoincompetent fetal sheep to investigate the BM-populating potential of these cells. Long-term chimerism, sustained human hematopoiesis, and expression of human cells belonging to all human blood cell lineages were demonstrated in two animals for more than 7 months' posttransplantation. Chimeric BM contained erythroid, granulocytic/monocytic, and megakaryocytic hematopoietic progenitor cells, as well as the primitive high proliferative potential colony-forming cell (HPP-CFC). Under a variety of in vitro experimental conditions, chimeric BM cells gave rise to human T cells expressing T-lymphocyte-specific markers, human natural killer (NK) cells, and human IgG-producing B cells. In vivo expansion and possibly self-renewal of transplanted PHPC was confirmed by the detection in chimeric BM 130 days' posttransplantation of CD34+ HLA-DR- cells, the phenotype of human cells constituting the stem-cell graft. These studies demonstrate not only the BM-populating capacity, multipotential differentiation, and most likely self-renewal capabilities of human CD34+ HLA-DR- cells, but also that this BM population contains human HSC. Furthermore, it appears that this animal model of xenogeneic stem-cell transplantation is extremely useful for in vivo examination of human hematopoiesis and the behavioral and functional characteristics of human HSC.

Original languageEnglish (US)
Pages (from-to)3333-3342
Number of pages10
Issue number11
StatePublished - 1993

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint Dive into the research topics of 'Persistence of human multilineage, self-renewing lymphohematopoietic stem cells in chimeric sheep'. Together they form a unique fingerprint.

  • Cite this