Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers.

R. F. Gilmour, D. P. Zipes

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The purpose of this study was to investigate possible mechanisms to explain the positive inotropic effects of acetylcholine in canine cardiac Purkinje fibers. Action potentials and tension were recorded from Purkinje fibers in vitro using microelectrodes and a force transducer. Acetylcholine (10(-9) to 10(-4) M) produced a dose-dependent increase in tension that was blocked by atropine but not by propranolol, phentolamine, hexamethonium, or verapamil. At 10(-5) and 10(-4) M, acetylcholine increased action potential duration at 50% of repolarization (APD50) but did not affect resting membrane potential, action potential amplitude, Vmax, or action potential duration at 90% of repolarization (APD90). Isoproterenol (10(-7) M) shortened APD50 and APD90 and increased developed tension. Subsequent addition of acetylcholine (10(-5) M) prolonged APD50 and APD90 and decreased tension. Increasing extracellular Ca2+ concentration [( Ca2+]o) from 2.0 to 3.0 mM increased tension and shortened APD50. Addition of acetylcholine (10(-5) M) increased tension further and prolonged APD50. In K+-depolarized fibers high concentrations of acetylcholine (10(-4) M) restored excitability, but lower concentrations (10(-6) M) suppressed slow responses induced by isoproterenol. Thus acetylcholine alone or with elevated [Ca2+]o increased APD50 and tension and facilitated the induction of slow responses, yet in the presence of isoproterenol acetylcholine increased APD50, decreased tension, and suppressed slow responses. These effects were mediated by muscarinic receptors and were independent of catecholamine release.

Original languageEnglish
JournalThe American journal of physiology
Volume249
Issue number4 Pt 2
StatePublished - Oct 1985
Externally publishedYes

Fingerprint

Purkinje Fibers
Action Potentials
Acetylcholine
Canidae
Isoproterenol
Hexamethonium
Phentolamine
Microelectrodes
Muscarinic Receptors
Verapamil
Transducers
Atropine
Propranolol
Membrane Potentials
Catecholamines

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers. / Gilmour, R. F.; Zipes, D. P.

In: The American journal of physiology, Vol. 249, No. 4 Pt 2, 10.1985.

Research output: Contribution to journalArticle

@article{3894ade5074e41f7903d3c46ea13287e,
title = "Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers.",
abstract = "The purpose of this study was to investigate possible mechanisms to explain the positive inotropic effects of acetylcholine in canine cardiac Purkinje fibers. Action potentials and tension were recorded from Purkinje fibers in vitro using microelectrodes and a force transducer. Acetylcholine (10(-9) to 10(-4) M) produced a dose-dependent increase in tension that was blocked by atropine but not by propranolol, phentolamine, hexamethonium, or verapamil. At 10(-5) and 10(-4) M, acetylcholine increased action potential duration at 50{\%} of repolarization (APD50) but did not affect resting membrane potential, action potential amplitude, Vmax, or action potential duration at 90{\%} of repolarization (APD90). Isoproterenol (10(-7) M) shortened APD50 and APD90 and increased developed tension. Subsequent addition of acetylcholine (10(-5) M) prolonged APD50 and APD90 and decreased tension. Increasing extracellular Ca2+ concentration [( Ca2+]o) from 2.0 to 3.0 mM increased tension and shortened APD50. Addition of acetylcholine (10(-5) M) increased tension further and prolonged APD50. In K+-depolarized fibers high concentrations of acetylcholine (10(-4) M) restored excitability, but lower concentrations (10(-6) M) suppressed slow responses induced by isoproterenol. Thus acetylcholine alone or with elevated [Ca2+]o increased APD50 and tension and facilitated the induction of slow responses, yet in the presence of isoproterenol acetylcholine increased APD50, decreased tension, and suppressed slow responses. These effects were mediated by muscarinic receptors and were independent of catecholamine release.",
author = "Gilmour, {R. F.} and Zipes, {D. P.}",
year = "1985",
month = "10",
language = "English",
volume = "249",
journal = "American Journal of Physiology",
issn = "0193-1857",
publisher = "American Physiological Society",
number = "4 Pt 2",

}

TY - JOUR

T1 - Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers.

AU - Gilmour, R. F.

AU - Zipes, D. P.

PY - 1985/10

Y1 - 1985/10

N2 - The purpose of this study was to investigate possible mechanisms to explain the positive inotropic effects of acetylcholine in canine cardiac Purkinje fibers. Action potentials and tension were recorded from Purkinje fibers in vitro using microelectrodes and a force transducer. Acetylcholine (10(-9) to 10(-4) M) produced a dose-dependent increase in tension that was blocked by atropine but not by propranolol, phentolamine, hexamethonium, or verapamil. At 10(-5) and 10(-4) M, acetylcholine increased action potential duration at 50% of repolarization (APD50) but did not affect resting membrane potential, action potential amplitude, Vmax, or action potential duration at 90% of repolarization (APD90). Isoproterenol (10(-7) M) shortened APD50 and APD90 and increased developed tension. Subsequent addition of acetylcholine (10(-5) M) prolonged APD50 and APD90 and decreased tension. Increasing extracellular Ca2+ concentration [( Ca2+]o) from 2.0 to 3.0 mM increased tension and shortened APD50. Addition of acetylcholine (10(-5) M) increased tension further and prolonged APD50. In K+-depolarized fibers high concentrations of acetylcholine (10(-4) M) restored excitability, but lower concentrations (10(-6) M) suppressed slow responses induced by isoproterenol. Thus acetylcholine alone or with elevated [Ca2+]o increased APD50 and tension and facilitated the induction of slow responses, yet in the presence of isoproterenol acetylcholine increased APD50, decreased tension, and suppressed slow responses. These effects were mediated by muscarinic receptors and were independent of catecholamine release.

AB - The purpose of this study was to investigate possible mechanisms to explain the positive inotropic effects of acetylcholine in canine cardiac Purkinje fibers. Action potentials and tension were recorded from Purkinje fibers in vitro using microelectrodes and a force transducer. Acetylcholine (10(-9) to 10(-4) M) produced a dose-dependent increase in tension that was blocked by atropine but not by propranolol, phentolamine, hexamethonium, or verapamil. At 10(-5) and 10(-4) M, acetylcholine increased action potential duration at 50% of repolarization (APD50) but did not affect resting membrane potential, action potential amplitude, Vmax, or action potential duration at 90% of repolarization (APD90). Isoproterenol (10(-7) M) shortened APD50 and APD90 and increased developed tension. Subsequent addition of acetylcholine (10(-5) M) prolonged APD50 and APD90 and decreased tension. Increasing extracellular Ca2+ concentration [( Ca2+]o) from 2.0 to 3.0 mM increased tension and shortened APD50. Addition of acetylcholine (10(-5) M) increased tension further and prolonged APD50. In K+-depolarized fibers high concentrations of acetylcholine (10(-4) M) restored excitability, but lower concentrations (10(-6) M) suppressed slow responses induced by isoproterenol. Thus acetylcholine alone or with elevated [Ca2+]o increased APD50 and tension and facilitated the induction of slow responses, yet in the presence of isoproterenol acetylcholine increased APD50, decreased tension, and suppressed slow responses. These effects were mediated by muscarinic receptors and were independent of catecholamine release.

UR - http://www.scopus.com/inward/record.url?scp=0022134359&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022134359&partnerID=8YFLogxK

M3 - Article

VL - 249

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0193-1857

IS - 4 Pt 2

ER -