Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons

Research output: Contribution to journalArticle

106 Citations (Scopus)

Abstract

The cellular mechanisms giving rise to the enhanced excitability induced by prostaglandin E2 (PGE2) and carba prostacyclin (CPGI2) in embryonic rat sensory neurons were investigated using the whole cell patch-clamp recording technique. Exposing sensory neurons to 1 μM PGE2 produced a twofold increase in the number of action potentials elicited by a ramp of depolarizing current, but this eicosanoid had no effect on the resting membrane potential or the amplitude of the slow afterhyperpolarization. Characterization of the outward potassium currents in the embryonic sensory neurons indicated that the composition of the total current was variable among these neurons. A steady-state inactivation protocol was used to determine the extent of residual noninactivating current. A conditioning prepulse to +20 mV demonstrated that some of these neurons exhibited only a sustained potassium current with little steady-state inactivation whereas others exhibited some combination of a sustained as well as a rapidly inactivating I(A)-type current. Treatment with I μM PGE: or 1 μM CPGI2, but not 1 μM prostaglandin F(2α) (PGF(2α)) produced a time-dependent suppression of the total potassium current. After a 20-min exposure, PGE2 and CPGI2 inhibited the maximal current obtained at +60 mV by 48 and 40%, respectively. The prostaglandin-induced suppression of the potassium current was not associated with a shift in the voltage dependence for activation. Subtraction of the currents remaining after PGE2 or CPGI2 treatment from their respective control recordings revealed that the prostaglandin-sensitive current had characteristics that were consistent with a sustained-type of potassium current. This idea is supported by the following observation. The steady-state inactivation protocol revealed that for prepulse voltages activating both rapidly inactivating and sustained currents, the relaxation of the current was accelerated after treatment with PGE2 or CPGI2 suggesting the removal of a slower component. This effect was not observed in neurons exhibiting only the sustained type current. These results suggest that pro-inflammatory prostaglandins enhance the excitability of rat sensory neurons, in part, through the suppression of an outward potassium current that may modulate the firing threshold for generation of the action potential.

Original languageEnglish
Pages (from-to)167-176
Number of pages10
JournalJournal of Neurophysiology
Volume77
Issue number1
StatePublished - 1997

Fingerprint

Sensory Receptor Cells
Prostaglandins
Potassium
Dinoprostone
Neurons
Action Potentials
Architectural Accessibility
Eicosanoids
Patch-Clamp Techniques
Membrane Potentials
Observation

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons. / Nicol, Grant; Vasko, Michael; Evans, A. R.

In: Journal of Neurophysiology, Vol. 77, No. 1, 1997, p. 167-176.

Research output: Contribution to journalArticle

@article{d198184d984e4ab39b6aa998d282610d,
title = "Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons",
abstract = "The cellular mechanisms giving rise to the enhanced excitability induced by prostaglandin E2 (PGE2) and carba prostacyclin (CPGI2) in embryonic rat sensory neurons were investigated using the whole cell patch-clamp recording technique. Exposing sensory neurons to 1 μM PGE2 produced a twofold increase in the number of action potentials elicited by a ramp of depolarizing current, but this eicosanoid had no effect on the resting membrane potential or the amplitude of the slow afterhyperpolarization. Characterization of the outward potassium currents in the embryonic sensory neurons indicated that the composition of the total current was variable among these neurons. A steady-state inactivation protocol was used to determine the extent of residual noninactivating current. A conditioning prepulse to +20 mV demonstrated that some of these neurons exhibited only a sustained potassium current with little steady-state inactivation whereas others exhibited some combination of a sustained as well as a rapidly inactivating I(A)-type current. Treatment with I μM PGE: or 1 μM CPGI2, but not 1 μM prostaglandin F(2α) (PGF(2α)) produced a time-dependent suppression of the total potassium current. After a 20-min exposure, PGE2 and CPGI2 inhibited the maximal current obtained at +60 mV by 48 and 40{\%}, respectively. The prostaglandin-induced suppression of the potassium current was not associated with a shift in the voltage dependence for activation. Subtraction of the currents remaining after PGE2 or CPGI2 treatment from their respective control recordings revealed that the prostaglandin-sensitive current had characteristics that were consistent with a sustained-type of potassium current. This idea is supported by the following observation. The steady-state inactivation protocol revealed that for prepulse voltages activating both rapidly inactivating and sustained currents, the relaxation of the current was accelerated after treatment with PGE2 or CPGI2 suggesting the removal of a slower component. This effect was not observed in neurons exhibiting only the sustained type current. These results suggest that pro-inflammatory prostaglandins enhance the excitability of rat sensory neurons, in part, through the suppression of an outward potassium current that may modulate the firing threshold for generation of the action potential.",
author = "Grant Nicol and Michael Vasko and Evans, {A. R.}",
year = "1997",
language = "English",
volume = "77",
pages = "167--176",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons

AU - Nicol, Grant

AU - Vasko, Michael

AU - Evans, A. R.

PY - 1997

Y1 - 1997

N2 - The cellular mechanisms giving rise to the enhanced excitability induced by prostaglandin E2 (PGE2) and carba prostacyclin (CPGI2) in embryonic rat sensory neurons were investigated using the whole cell patch-clamp recording technique. Exposing sensory neurons to 1 μM PGE2 produced a twofold increase in the number of action potentials elicited by a ramp of depolarizing current, but this eicosanoid had no effect on the resting membrane potential or the amplitude of the slow afterhyperpolarization. Characterization of the outward potassium currents in the embryonic sensory neurons indicated that the composition of the total current was variable among these neurons. A steady-state inactivation protocol was used to determine the extent of residual noninactivating current. A conditioning prepulse to +20 mV demonstrated that some of these neurons exhibited only a sustained potassium current with little steady-state inactivation whereas others exhibited some combination of a sustained as well as a rapidly inactivating I(A)-type current. Treatment with I μM PGE: or 1 μM CPGI2, but not 1 μM prostaglandin F(2α) (PGF(2α)) produced a time-dependent suppression of the total potassium current. After a 20-min exposure, PGE2 and CPGI2 inhibited the maximal current obtained at +60 mV by 48 and 40%, respectively. The prostaglandin-induced suppression of the potassium current was not associated with a shift in the voltage dependence for activation. Subtraction of the currents remaining after PGE2 or CPGI2 treatment from their respective control recordings revealed that the prostaglandin-sensitive current had characteristics that were consistent with a sustained-type of potassium current. This idea is supported by the following observation. The steady-state inactivation protocol revealed that for prepulse voltages activating both rapidly inactivating and sustained currents, the relaxation of the current was accelerated after treatment with PGE2 or CPGI2 suggesting the removal of a slower component. This effect was not observed in neurons exhibiting only the sustained type current. These results suggest that pro-inflammatory prostaglandins enhance the excitability of rat sensory neurons, in part, through the suppression of an outward potassium current that may modulate the firing threshold for generation of the action potential.

AB - The cellular mechanisms giving rise to the enhanced excitability induced by prostaglandin E2 (PGE2) and carba prostacyclin (CPGI2) in embryonic rat sensory neurons were investigated using the whole cell patch-clamp recording technique. Exposing sensory neurons to 1 μM PGE2 produced a twofold increase in the number of action potentials elicited by a ramp of depolarizing current, but this eicosanoid had no effect on the resting membrane potential or the amplitude of the slow afterhyperpolarization. Characterization of the outward potassium currents in the embryonic sensory neurons indicated that the composition of the total current was variable among these neurons. A steady-state inactivation protocol was used to determine the extent of residual noninactivating current. A conditioning prepulse to +20 mV demonstrated that some of these neurons exhibited only a sustained potassium current with little steady-state inactivation whereas others exhibited some combination of a sustained as well as a rapidly inactivating I(A)-type current. Treatment with I μM PGE: or 1 μM CPGI2, but not 1 μM prostaglandin F(2α) (PGF(2α)) produced a time-dependent suppression of the total potassium current. After a 20-min exposure, PGE2 and CPGI2 inhibited the maximal current obtained at +60 mV by 48 and 40%, respectively. The prostaglandin-induced suppression of the potassium current was not associated with a shift in the voltage dependence for activation. Subtraction of the currents remaining after PGE2 or CPGI2 treatment from their respective control recordings revealed that the prostaglandin-sensitive current had characteristics that were consistent with a sustained-type of potassium current. This idea is supported by the following observation. The steady-state inactivation protocol revealed that for prepulse voltages activating both rapidly inactivating and sustained currents, the relaxation of the current was accelerated after treatment with PGE2 or CPGI2 suggesting the removal of a slower component. This effect was not observed in neurons exhibiting only the sustained type current. These results suggest that pro-inflammatory prostaglandins enhance the excitability of rat sensory neurons, in part, through the suppression of an outward potassium current that may modulate the firing threshold for generation of the action potential.

UR - http://www.scopus.com/inward/record.url?scp=0031028391&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031028391&partnerID=8YFLogxK

M3 - Article

C2 - 9120557

AN - SCOPUS:0031028391

VL - 77

SP - 167

EP - 176

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 1

ER -