Recombinant human parvovirus B19 vectors: Erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells

K. A. Weigel-Kelley, Mervin Yoder, A. Srivastava

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

The blood group P antigen, known to be abundantly expressed on erythroid cells, has been reported to be the cellular receptor for parvovirus B19. We have described the development of recombinant parvovirus B19 vectors with which high-efficiency, erythroid lineage-restricted transduction can be achieved (S. Ponnazhagan, K. A. Weigel, S. P. Raikwar, P. Mukherjee, M. C. Yoder, and A. Srivastava, J. Virol. 72:5224-5230, 1998). However, since a low-level transduction of nonerythroid cells could also be detected and since P antigen is expressed in nonerythroid cells, we reevaluated the role of P antigen in the viral binding and entry into cells. Cell surface expression analyses revealed that ∼75% of primary human bone marrow mononuclear erythroid cells and ∼31% of cells in the nonerythroid population were positive for P antigen. Two human erythroleukemia cell lines, HEL and K562, and a human promyelocytic leukemia cell line, HL-60, were also examined for P antigen expression and binding and entry of the vector. HEL and K562 cells showed intermediate levels, whereas HL-60 cells demonstrated high levels of expression of P antigen. However, the efficiency of vector binding to these cells did not correlate with P antigen expression. Moreover, despite P antigen positivity and efficient viral binding, HEL, K562, and HL-60 cells could not be transduced with the vector. Low levels of P antigen expression could also be detected in two primary cell types, human umbilical vein endothelial cells (HUVEC) and normal human lung fibroblasts (NHLF). In addition, vector binding occurred in both cell types and was inhibited by globoside, indicating the involvement of P antigen in virus binding to these cells. These primary cells could be efficiently transduced with the recombinant vector. These data suggest that (i) P antigen is expressed on a variety of cell types and is involved in binding of parvovirus B19 to human cells, (ii) the level of P antigen expression does not correlate with the efficiency of viral binding, (iii) P antigen is necessary but not sufficient for parvovirus B19 entry into cells, and (iv) parvovirus B19 vectors can be used to transduce HUVEC and NHLF. These studies further suggest the existence of a putative cellular coreceptor for efficient entry of parvovirus B19 into human cells.

Original languageEnglish
Pages (from-to)4110-4116
Number of pages7
JournalJournal of Virology
Volume75
Issue number9
DOIs
StatePublished - 2001

Fingerprint

B19 virus
Human Parvovirus B19
erythrocytes
Erythrocytes
antigens
Antigens
cells
Protoparvovirus
Parvovirus
Erythroid Cells
HL-60 Cells
Human Umbilical Vein Endothelial Cells
Globosides
Fibroblasts
fibroblasts
Virus Attachment
Cell Line
Lung
Leukemia, Erythroblastic, Acute
K562 Cells

ASJC Scopus subject areas

  • Immunology

Cite this

Recombinant human parvovirus B19 vectors : Erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells. / Weigel-Kelley, K. A.; Yoder, Mervin; Srivastava, A.

In: Journal of Virology, Vol. 75, No. 9, 2001, p. 4110-4116.

Research output: Contribution to journalArticle

@article{c95001b603af44d98ea99c46dc738206,
title = "Recombinant human parvovirus B19 vectors: Erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells",
abstract = "The blood group P antigen, known to be abundantly expressed on erythroid cells, has been reported to be the cellular receptor for parvovirus B19. We have described the development of recombinant parvovirus B19 vectors with which high-efficiency, erythroid lineage-restricted transduction can be achieved (S. Ponnazhagan, K. A. Weigel, S. P. Raikwar, P. Mukherjee, M. C. Yoder, and A. Srivastava, J. Virol. 72:5224-5230, 1998). However, since a low-level transduction of nonerythroid cells could also be detected and since P antigen is expressed in nonerythroid cells, we reevaluated the role of P antigen in the viral binding and entry into cells. Cell surface expression analyses revealed that ∼75{\%} of primary human bone marrow mononuclear erythroid cells and ∼31{\%} of cells in the nonerythroid population were positive for P antigen. Two human erythroleukemia cell lines, HEL and K562, and a human promyelocytic leukemia cell line, HL-60, were also examined for P antigen expression and binding and entry of the vector. HEL and K562 cells showed intermediate levels, whereas HL-60 cells demonstrated high levels of expression of P antigen. However, the efficiency of vector binding to these cells did not correlate with P antigen expression. Moreover, despite P antigen positivity and efficient viral binding, HEL, K562, and HL-60 cells could not be transduced with the vector. Low levels of P antigen expression could also be detected in two primary cell types, human umbilical vein endothelial cells (HUVEC) and normal human lung fibroblasts (NHLF). In addition, vector binding occurred in both cell types and was inhibited by globoside, indicating the involvement of P antigen in virus binding to these cells. These primary cells could be efficiently transduced with the recombinant vector. These data suggest that (i) P antigen is expressed on a variety of cell types and is involved in binding of parvovirus B19 to human cells, (ii) the level of P antigen expression does not correlate with the efficiency of viral binding, (iii) P antigen is necessary but not sufficient for parvovirus B19 entry into cells, and (iv) parvovirus B19 vectors can be used to transduce HUVEC and NHLF. These studies further suggest the existence of a putative cellular coreceptor for efficient entry of parvovirus B19 into human cells.",
author = "Weigel-Kelley, {K. A.} and Mervin Yoder and A. Srivastava",
year = "2001",
doi = "10.1128/JVI.75.9.4110-4116.2001",
language = "English",
volume = "75",
pages = "4110--4116",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "9",

}

TY - JOUR

T1 - Recombinant human parvovirus B19 vectors

T2 - Erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells

AU - Weigel-Kelley, K. A.

AU - Yoder, Mervin

AU - Srivastava, A.

PY - 2001

Y1 - 2001

N2 - The blood group P antigen, known to be abundantly expressed on erythroid cells, has been reported to be the cellular receptor for parvovirus B19. We have described the development of recombinant parvovirus B19 vectors with which high-efficiency, erythroid lineage-restricted transduction can be achieved (S. Ponnazhagan, K. A. Weigel, S. P. Raikwar, P. Mukherjee, M. C. Yoder, and A. Srivastava, J. Virol. 72:5224-5230, 1998). However, since a low-level transduction of nonerythroid cells could also be detected and since P antigen is expressed in nonerythroid cells, we reevaluated the role of P antigen in the viral binding and entry into cells. Cell surface expression analyses revealed that ∼75% of primary human bone marrow mononuclear erythroid cells and ∼31% of cells in the nonerythroid population were positive for P antigen. Two human erythroleukemia cell lines, HEL and K562, and a human promyelocytic leukemia cell line, HL-60, were also examined for P antigen expression and binding and entry of the vector. HEL and K562 cells showed intermediate levels, whereas HL-60 cells demonstrated high levels of expression of P antigen. However, the efficiency of vector binding to these cells did not correlate with P antigen expression. Moreover, despite P antigen positivity and efficient viral binding, HEL, K562, and HL-60 cells could not be transduced with the vector. Low levels of P antigen expression could also be detected in two primary cell types, human umbilical vein endothelial cells (HUVEC) and normal human lung fibroblasts (NHLF). In addition, vector binding occurred in both cell types and was inhibited by globoside, indicating the involvement of P antigen in virus binding to these cells. These primary cells could be efficiently transduced with the recombinant vector. These data suggest that (i) P antigen is expressed on a variety of cell types and is involved in binding of parvovirus B19 to human cells, (ii) the level of P antigen expression does not correlate with the efficiency of viral binding, (iii) P antigen is necessary but not sufficient for parvovirus B19 entry into cells, and (iv) parvovirus B19 vectors can be used to transduce HUVEC and NHLF. These studies further suggest the existence of a putative cellular coreceptor for efficient entry of parvovirus B19 into human cells.

AB - The blood group P antigen, known to be abundantly expressed on erythroid cells, has been reported to be the cellular receptor for parvovirus B19. We have described the development of recombinant parvovirus B19 vectors with which high-efficiency, erythroid lineage-restricted transduction can be achieved (S. Ponnazhagan, K. A. Weigel, S. P. Raikwar, P. Mukherjee, M. C. Yoder, and A. Srivastava, J. Virol. 72:5224-5230, 1998). However, since a low-level transduction of nonerythroid cells could also be detected and since P antigen is expressed in nonerythroid cells, we reevaluated the role of P antigen in the viral binding and entry into cells. Cell surface expression analyses revealed that ∼75% of primary human bone marrow mononuclear erythroid cells and ∼31% of cells in the nonerythroid population were positive for P antigen. Two human erythroleukemia cell lines, HEL and K562, and a human promyelocytic leukemia cell line, HL-60, were also examined for P antigen expression and binding and entry of the vector. HEL and K562 cells showed intermediate levels, whereas HL-60 cells demonstrated high levels of expression of P antigen. However, the efficiency of vector binding to these cells did not correlate with P antigen expression. Moreover, despite P antigen positivity and efficient viral binding, HEL, K562, and HL-60 cells could not be transduced with the vector. Low levels of P antigen expression could also be detected in two primary cell types, human umbilical vein endothelial cells (HUVEC) and normal human lung fibroblasts (NHLF). In addition, vector binding occurred in both cell types and was inhibited by globoside, indicating the involvement of P antigen in virus binding to these cells. These primary cells could be efficiently transduced with the recombinant vector. These data suggest that (i) P antigen is expressed on a variety of cell types and is involved in binding of parvovirus B19 to human cells, (ii) the level of P antigen expression does not correlate with the efficiency of viral binding, (iii) P antigen is necessary but not sufficient for parvovirus B19 entry into cells, and (iv) parvovirus B19 vectors can be used to transduce HUVEC and NHLF. These studies further suggest the existence of a putative cellular coreceptor for efficient entry of parvovirus B19 into human cells.

UR - http://www.scopus.com/inward/record.url?scp=0035047431&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035047431&partnerID=8YFLogxK

U2 - 10.1128/JVI.75.9.4110-4116.2001

DO - 10.1128/JVI.75.9.4110-4116.2001

M3 - Article

C2 - 11287560

AN - SCOPUS:0035047431

VL - 75

SP - 4110

EP - 4116

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 9

ER -