Regulation of cell motility by mitogen-activated protein kinase

Richard L. Klemke, Shuang Cai, Ana L. Giannini, Patricia J. Gallagher, Primal De Lanerolle, David A. Cheresh

Research output: Contribution to journalArticlepeer-review

1056 Scopus citations

Abstract

Cell interaction with adhesive proteins or growth factors in the extracellular matrix initiates Ras/mitogen-activated protein (MAP) kinase signaling. Evidence is provided that MAP kinase (ERK1 and ERK2) influences the cells' motility machinery by phosphorylating and, thereby, enhancing myosin light chain kinase (MLCK) activity leading to phosphorylation of myosin light chains (MLC). Inhibition of MAP kinase activity causes decreased MLCK function, MLC phosphorylation, and cell migration on extracellular matrix proteins. In contrast, expression of mutationally active MAP kinase kinase causes activation of MAP kinase leading to phosphorylation of MLCK and MLC and enhanced cell migration. In vitro results support these findings since ERK-phosphorylated MLCK has an increased capacity to phosphorylate MLC and shows increased sensitivity to calmodulin. Thus, we define a signaling pathway directly downstream of MAP kinase, influencing cell migration on the extracellular matrix.

Original languageEnglish (US)
Pages (from-to)481-492
Number of pages12
JournalJournal of Cell Biology
Volume137
Issue number2
DOIs
StatePublished - Apr 21 1997

ASJC Scopus subject areas

  • Cell Biology

Fingerprint Dive into the research topics of 'Regulation of cell motility by mitogen-activated protein kinase'. Together they form a unique fingerprint.

Cite this