Regulation of gene expression by internal ribosome entry sites or cryptic promoters

The eIF4G story

Baoguang Han, Jian-Ting Zhang

Research output: Contribution to journalArticle

94 Citations (Scopus)

Abstract

As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5′ untranslated region (5′-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5′-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5′-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPβ. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5′-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5′-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.

Original languageEnglish
Pages (from-to)7372-7384
Number of pages13
JournalMolecular and Cellular Biology
Volume22
Issue number21
DOIs
StatePublished - Nov 2002

Fingerprint

Gene Expression Regulation
5' Untranslated Regions
Messenger RNA
Northern Blotting
Proto-Oncogene Proteins c-ets
Sp1 Transcription Factor
Peptide Initiation Factors
Initiator Codon
Internal Ribosome Entry Sites
Protein Biosynthesis
Transcription Factors
Binding Sites

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

Regulation of gene expression by internal ribosome entry sites or cryptic promoters : The eIF4G story. / Han, Baoguang; Zhang, Jian-Ting.

In: Molecular and Cellular Biology, Vol. 22, No. 21, 11.2002, p. 7372-7384.

Research output: Contribution to journalArticle

@article{a2e9250d507a48809a1090525460cec9,
title = "Regulation of gene expression by internal ribosome entry sites or cryptic promoters: The eIF4G story",
abstract = "As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5′ untranslated region (5′-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5′-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5′-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPβ. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5′-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5′-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.",
author = "Baoguang Han and Jian-Ting Zhang",
year = "2002",
month = "11",
doi = "10.1128/MCB.22.21.7372-7384.2002",
language = "English",
volume = "22",
pages = "7372--7384",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "21",

}

TY - JOUR

T1 - Regulation of gene expression by internal ribosome entry sites or cryptic promoters

T2 - The eIF4G story

AU - Han, Baoguang

AU - Zhang, Jian-Ting

PY - 2002/11

Y1 - 2002/11

N2 - As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5′ untranslated region (5′-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5′-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5′-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPβ. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5′-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5′-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.

AB - As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5′ untranslated region (5′-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5′-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5′-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPβ. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5′-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5′-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.

UR - http://www.scopus.com/inward/record.url?scp=0036838078&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036838078&partnerID=8YFLogxK

U2 - 10.1128/MCB.22.21.7372-7384.2002

DO - 10.1128/MCB.22.21.7372-7384.2002

M3 - Article

VL - 22

SP - 7372

EP - 7384

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 21

ER -