Role of nucleotides in stabilization of the phospholamban/cardiac Ca2+ pump inhibitory complex examined with use of metal fluorides

Research output: Contribution to journalArticle

Abstract

Phospholamban (PLB) inhibits the activity of the cardiac calcium pump SERCA2a. We previously showed that PLB with engineered Cys residues only cross-linked with the Ca2+-free E2 intermediate of SERCA2a. Formation of E2•PLB prevents Ca2+ binding at the high-affinity Ca2+ binding sites, blocking the enzyme kinetic cycle. Here we further studied the synergistic action of PLB and ATP on E2 in terms of prevention of formation of the phosphorylated E2P-like states stabilized by metal fluorides. SERCA2a was co-expressed in insect cell microsomes with PLB mutants of normal or super-inhibitory strength, with cross-linkable mutations at either the cytosolic side (N30C) or the luminal side (V49C) of PLB. For normal-strength PLB mutants, in the absence of nucleotide, metal fluorides totally inhibited both SERCA2a enzyme activity and cross-linking of PLB to SERCA2a at both sites, suggesting that PLB dissociates from SERCA2a in the E2P-like states. However, under the same conditions, super-inhibitory PLB mutants prevented total enzyme inhibition by metal fluorides. Further, the cross-linking of super-inhibitory PLB to SERCA2a was only partially inhibited by metal fluorides, but was drastically restored upon sequential addition of ATP. These results revealed the equilibrium between E2•PLB, E2•ATP, or E2•ATP•PLB states and E2P-like states, suggesting that the synergistic binding of ATP and PLB to SERCA is very strong, sufficient to prevent formation of E2 phosphoenzymes, even when stabilized by metal fluorides. Phospholamban (PLB) inhibits the cardiac calcium pump (SERCA2a) by binding to the calcium-free, E2 state. We showed that the synergistic action of super-inhibitory PLB and ATP reversed metal fluorides inhibition of the enzyme activity and SERCA2a cross-linking to PLB. Thus, the E2•ATP•PLB complex prevents the formation of E2 phosphoenzymes, even when stabilized by metal fluorides.

Original languageEnglish (US)
Pages (from-to)4402-4414
Number of pages13
JournalFEBS Journal
Volume282
Issue number22
DOIs
StatePublished - Nov 1 2015

Fingerprint

Fluorides
Nucleotides
Stabilization
Metals
Pumps
Adenosine Triphosphate
Enzyme inhibition
Enzyme activity
Enzymes
phospholamban
Calcium
Enzyme kinetics
Microsomes
Insects
Binding Sites

Keywords

  • calcium ATPase
  • conformational changes
  • metal fluorides
  • phospholamban
  • protein cross-linking

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

Role of nucleotides in stabilization of the phospholamban/cardiac Ca2+ pump inhibitory complex examined with use of metal fluorides. / Chen, Zhenhui.

In: FEBS Journal, Vol. 282, No. 22, 01.11.2015, p. 4402-4414.

Research output: Contribution to journalArticle

@article{a2a43ffc58f34b2dbcfc4c9569f2cf9d,
title = "Role of nucleotides in stabilization of the phospholamban/cardiac Ca2+ pump inhibitory complex examined with use of metal fluorides",
abstract = "Phospholamban (PLB) inhibits the activity of the cardiac calcium pump SERCA2a. We previously showed that PLB with engineered Cys residues only cross-linked with the Ca2+-free E2 intermediate of SERCA2a. Formation of E2•PLB prevents Ca2+ binding at the high-affinity Ca2+ binding sites, blocking the enzyme kinetic cycle. Here we further studied the synergistic action of PLB and ATP on E2 in terms of prevention of formation of the phosphorylated E2P-like states stabilized by metal fluorides. SERCA2a was co-expressed in insect cell microsomes with PLB mutants of normal or super-inhibitory strength, with cross-linkable mutations at either the cytosolic side (N30C) or the luminal side (V49C) of PLB. For normal-strength PLB mutants, in the absence of nucleotide, metal fluorides totally inhibited both SERCA2a enzyme activity and cross-linking of PLB to SERCA2a at both sites, suggesting that PLB dissociates from SERCA2a in the E2P-like states. However, under the same conditions, super-inhibitory PLB mutants prevented total enzyme inhibition by metal fluorides. Further, the cross-linking of super-inhibitory PLB to SERCA2a was only partially inhibited by metal fluorides, but was drastically restored upon sequential addition of ATP. These results revealed the equilibrium between E2•PLB, E2•ATP, or E2•ATP•PLB states and E2P-like states, suggesting that the synergistic binding of ATP and PLB to SERCA is very strong, sufficient to prevent formation of E2 phosphoenzymes, even when stabilized by metal fluorides. Phospholamban (PLB) inhibits the cardiac calcium pump (SERCA2a) by binding to the calcium-free, E2 state. We showed that the synergistic action of super-inhibitory PLB and ATP reversed metal fluorides inhibition of the enzyme activity and SERCA2a cross-linking to PLB. Thus, the E2•ATP•PLB complex prevents the formation of E2 phosphoenzymes, even when stabilized by metal fluorides.",
keywords = "calcium ATPase, conformational changes, metal fluorides, phospholamban, protein cross-linking",
author = "Zhenhui Chen",
year = "2015",
month = "11",
day = "1",
doi = "10.1111/febs.13506",
language = "English (US)",
volume = "282",
pages = "4402--4414",
journal = "FEBS Journal",
issn = "1742-464X",
publisher = "Wiley-Blackwell",
number = "22",

}

TY - JOUR

T1 - Role of nucleotides in stabilization of the phospholamban/cardiac Ca2+ pump inhibitory complex examined with use of metal fluorides

AU - Chen, Zhenhui

PY - 2015/11/1

Y1 - 2015/11/1

N2 - Phospholamban (PLB) inhibits the activity of the cardiac calcium pump SERCA2a. We previously showed that PLB with engineered Cys residues only cross-linked with the Ca2+-free E2 intermediate of SERCA2a. Formation of E2•PLB prevents Ca2+ binding at the high-affinity Ca2+ binding sites, blocking the enzyme kinetic cycle. Here we further studied the synergistic action of PLB and ATP on E2 in terms of prevention of formation of the phosphorylated E2P-like states stabilized by metal fluorides. SERCA2a was co-expressed in insect cell microsomes with PLB mutants of normal or super-inhibitory strength, with cross-linkable mutations at either the cytosolic side (N30C) or the luminal side (V49C) of PLB. For normal-strength PLB mutants, in the absence of nucleotide, metal fluorides totally inhibited both SERCA2a enzyme activity and cross-linking of PLB to SERCA2a at both sites, suggesting that PLB dissociates from SERCA2a in the E2P-like states. However, under the same conditions, super-inhibitory PLB mutants prevented total enzyme inhibition by metal fluorides. Further, the cross-linking of super-inhibitory PLB to SERCA2a was only partially inhibited by metal fluorides, but was drastically restored upon sequential addition of ATP. These results revealed the equilibrium between E2•PLB, E2•ATP, or E2•ATP•PLB states and E2P-like states, suggesting that the synergistic binding of ATP and PLB to SERCA is very strong, sufficient to prevent formation of E2 phosphoenzymes, even when stabilized by metal fluorides. Phospholamban (PLB) inhibits the cardiac calcium pump (SERCA2a) by binding to the calcium-free, E2 state. We showed that the synergistic action of super-inhibitory PLB and ATP reversed metal fluorides inhibition of the enzyme activity and SERCA2a cross-linking to PLB. Thus, the E2•ATP•PLB complex prevents the formation of E2 phosphoenzymes, even when stabilized by metal fluorides.

AB - Phospholamban (PLB) inhibits the activity of the cardiac calcium pump SERCA2a. We previously showed that PLB with engineered Cys residues only cross-linked with the Ca2+-free E2 intermediate of SERCA2a. Formation of E2•PLB prevents Ca2+ binding at the high-affinity Ca2+ binding sites, blocking the enzyme kinetic cycle. Here we further studied the synergistic action of PLB and ATP on E2 in terms of prevention of formation of the phosphorylated E2P-like states stabilized by metal fluorides. SERCA2a was co-expressed in insect cell microsomes with PLB mutants of normal or super-inhibitory strength, with cross-linkable mutations at either the cytosolic side (N30C) or the luminal side (V49C) of PLB. For normal-strength PLB mutants, in the absence of nucleotide, metal fluorides totally inhibited both SERCA2a enzyme activity and cross-linking of PLB to SERCA2a at both sites, suggesting that PLB dissociates from SERCA2a in the E2P-like states. However, under the same conditions, super-inhibitory PLB mutants prevented total enzyme inhibition by metal fluorides. Further, the cross-linking of super-inhibitory PLB to SERCA2a was only partially inhibited by metal fluorides, but was drastically restored upon sequential addition of ATP. These results revealed the equilibrium between E2•PLB, E2•ATP, or E2•ATP•PLB states and E2P-like states, suggesting that the synergistic binding of ATP and PLB to SERCA is very strong, sufficient to prevent formation of E2 phosphoenzymes, even when stabilized by metal fluorides. Phospholamban (PLB) inhibits the cardiac calcium pump (SERCA2a) by binding to the calcium-free, E2 state. We showed that the synergistic action of super-inhibitory PLB and ATP reversed metal fluorides inhibition of the enzyme activity and SERCA2a cross-linking to PLB. Thus, the E2•ATP•PLB complex prevents the formation of E2 phosphoenzymes, even when stabilized by metal fluorides.

KW - calcium ATPase

KW - conformational changes

KW - metal fluorides

KW - phospholamban

KW - protein cross-linking

UR - http://www.scopus.com/inward/record.url?scp=84954506535&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84954506535&partnerID=8YFLogxK

U2 - 10.1111/febs.13506

DO - 10.1111/febs.13506

M3 - Article

C2 - 26337774

AN - SCOPUS:84954506535

VL - 282

SP - 4402

EP - 4414

JO - FEBS Journal

JF - FEBS Journal

SN - 1742-464X

IS - 22

ER -