Role of protein kinase C in the regulation of prostaglandin synthesis in human endothelium.

J. G. Garcia, J. Stasek, V. Natarajan, C. E. Patterson, Jesus Dominguez

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

The present study specifically addresses the role of protein kinase C (PKC) activation in human endothelial cell Ca2+ mobilization, a response that is functionally coupled to the production of the potent arachidonate (AA) metabolite, prostacyclin (PGI2). Phorbol 12-myristate 13-acetate (PMA), alpha-thrombin, and sodium fluoride (NaF), a direct G-protein activator, produced a rapid and time-dependent translocation of PKC from the cytosol to the membrane. Activation of PKC by brief pretreatment of human umbilical vein endothelial cell (HUVEC) monolayers with PMA resulted in the inhibition of NaF-induced inositol phosphate increases and attenuation of both alpha-thrombin- and NaF-activated increases in intracellular Ca2+ (Ca2+i). Ca2+ mobilization induced by ionophore A23187 was not affected by PKC preactivation, suggesting PKC-dependent negative feedback inhibition of phosphatidylinositol (PI)-specific phospholipase C (PLC). Agonist-stimulated AA release and PGI2 synthesis in PMA-pretreated cultured human endothelial cells, however, was potentiated, and the enhanced PGI2 synthesis produced by A23187, NaF, and alpha-thrombin was dependent upon the dose of PMA. Treatment of HUVEC monolayers with an intracellular Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid-acetoxymethylester (BAPTA-AM), dramatically reduced alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis, demonstrating the importance of Ca2+i availability in PGI2 synthesis. BAPTA pretreatment did not inhibit PMA-induced PKC activation, and BAPTA-mediated inhibition of agonist-stimulated PGI2 synthesis was partially attenuated by prior PMA pretreatment. Staurosporine, a potent PKC inhibitor, at concentrations that inhibited PKC-induced phosphorylation of histone-1, augmented both alpha-thrombin- and NaF-induced production of inositol phosphates but markedly inhibited alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis. The downregulation of PKC activity by prolonged PMA treatment (18 h) produced similar inhibition of PGI2 synthesis by these agonists (approximately 50% inhibition). These studies indicate that the integrated phospholipase A2 and PLC activities are under complex regulation by factors that include both PKC activation and [Ca2+i]. PKC exerts dual effects on prostaglandin synthesis via negative regulation of Gp-coupled PI-specific PLC and positive feedback regulation of AA release and PGI2 synthesis. PKC is thus a critical determinant in the regulation of human endothelial cell prostaglandin synthesis by both receptor-mediated and G-protein-dependent cellular activation.

Original languageEnglish
Pages (from-to)315-325
Number of pages11
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Volume6
Issue number3
StatePublished - Mar 1992

Fingerprint

Protein Kinase C
Prostaglandins
Endothelium
Epoprostenol
Thrombin
Acetates
Endothelial cells
Calcimycin
Chemical activation
Phosphoinositide Phospholipase C
Inositol Phosphates
Endothelial Cells
Human Umbilical Vein Endothelial Cells
GTP-Binding Proteins
Monolayers
Feedback
Sodium Fluoride
Phosphorylation
Staurosporine
Protein C Inhibitor

ASJC Scopus subject areas

  • Cell Biology
  • Molecular Biology
  • Pulmonary and Respiratory Medicine

Cite this

Role of protein kinase C in the regulation of prostaglandin synthesis in human endothelium. / Garcia, J. G.; Stasek, J.; Natarajan, V.; Patterson, C. E.; Dominguez, Jesus.

In: American Journal of Respiratory Cell and Molecular Biology, Vol. 6, No. 3, 03.1992, p. 315-325.

Research output: Contribution to journalArticle

@article{383587e6861846bc9451d74a6ed62eec,
title = "Role of protein kinase C in the regulation of prostaglandin synthesis in human endothelium.",
abstract = "The present study specifically addresses the role of protein kinase C (PKC) activation in human endothelial cell Ca2+ mobilization, a response that is functionally coupled to the production of the potent arachidonate (AA) metabolite, prostacyclin (PGI2). Phorbol 12-myristate 13-acetate (PMA), alpha-thrombin, and sodium fluoride (NaF), a direct G-protein activator, produced a rapid and time-dependent translocation of PKC from the cytosol to the membrane. Activation of PKC by brief pretreatment of human umbilical vein endothelial cell (HUVEC) monolayers with PMA resulted in the inhibition of NaF-induced inositol phosphate increases and attenuation of both alpha-thrombin- and NaF-activated increases in intracellular Ca2+ (Ca2+i). Ca2+ mobilization induced by ionophore A23187 was not affected by PKC preactivation, suggesting PKC-dependent negative feedback inhibition of phosphatidylinositol (PI)-specific phospholipase C (PLC). Agonist-stimulated AA release and PGI2 synthesis in PMA-pretreated cultured human endothelial cells, however, was potentiated, and the enhanced PGI2 synthesis produced by A23187, NaF, and alpha-thrombin was dependent upon the dose of PMA. Treatment of HUVEC monolayers with an intracellular Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid-acetoxymethylester (BAPTA-AM), dramatically reduced alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis, demonstrating the importance of Ca2+i availability in PGI2 synthesis. BAPTA pretreatment did not inhibit PMA-induced PKC activation, and BAPTA-mediated inhibition of agonist-stimulated PGI2 synthesis was partially attenuated by prior PMA pretreatment. Staurosporine, a potent PKC inhibitor, at concentrations that inhibited PKC-induced phosphorylation of histone-1, augmented both alpha-thrombin- and NaF-induced production of inositol phosphates but markedly inhibited alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis. The downregulation of PKC activity by prolonged PMA treatment (18 h) produced similar inhibition of PGI2 synthesis by these agonists (approximately 50{\%} inhibition). These studies indicate that the integrated phospholipase A2 and PLC activities are under complex regulation by factors that include both PKC activation and [Ca2+i]. PKC exerts dual effects on prostaglandin synthesis via negative regulation of Gp-coupled PI-specific PLC and positive feedback regulation of AA release and PGI2 synthesis. PKC is thus a critical determinant in the regulation of human endothelial cell prostaglandin synthesis by both receptor-mediated and G-protein-dependent cellular activation.",
author = "Garcia, {J. G.} and J. Stasek and V. Natarajan and Patterson, {C. E.} and Jesus Dominguez",
year = "1992",
month = "3",
language = "English",
volume = "6",
pages = "315--325",
journal = "American Journal of Respiratory Cell and Molecular Biology",
issn = "1044-1549",
publisher = "American Thoracic Society",
number = "3",

}

TY - JOUR

T1 - Role of protein kinase C in the regulation of prostaglandin synthesis in human endothelium.

AU - Garcia, J. G.

AU - Stasek, J.

AU - Natarajan, V.

AU - Patterson, C. E.

AU - Dominguez, Jesus

PY - 1992/3

Y1 - 1992/3

N2 - The present study specifically addresses the role of protein kinase C (PKC) activation in human endothelial cell Ca2+ mobilization, a response that is functionally coupled to the production of the potent arachidonate (AA) metabolite, prostacyclin (PGI2). Phorbol 12-myristate 13-acetate (PMA), alpha-thrombin, and sodium fluoride (NaF), a direct G-protein activator, produced a rapid and time-dependent translocation of PKC from the cytosol to the membrane. Activation of PKC by brief pretreatment of human umbilical vein endothelial cell (HUVEC) monolayers with PMA resulted in the inhibition of NaF-induced inositol phosphate increases and attenuation of both alpha-thrombin- and NaF-activated increases in intracellular Ca2+ (Ca2+i). Ca2+ mobilization induced by ionophore A23187 was not affected by PKC preactivation, suggesting PKC-dependent negative feedback inhibition of phosphatidylinositol (PI)-specific phospholipase C (PLC). Agonist-stimulated AA release and PGI2 synthesis in PMA-pretreated cultured human endothelial cells, however, was potentiated, and the enhanced PGI2 synthesis produced by A23187, NaF, and alpha-thrombin was dependent upon the dose of PMA. Treatment of HUVEC monolayers with an intracellular Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid-acetoxymethylester (BAPTA-AM), dramatically reduced alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis, demonstrating the importance of Ca2+i availability in PGI2 synthesis. BAPTA pretreatment did not inhibit PMA-induced PKC activation, and BAPTA-mediated inhibition of agonist-stimulated PGI2 synthesis was partially attenuated by prior PMA pretreatment. Staurosporine, a potent PKC inhibitor, at concentrations that inhibited PKC-induced phosphorylation of histone-1, augmented both alpha-thrombin- and NaF-induced production of inositol phosphates but markedly inhibited alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis. The downregulation of PKC activity by prolonged PMA treatment (18 h) produced similar inhibition of PGI2 synthesis by these agonists (approximately 50% inhibition). These studies indicate that the integrated phospholipase A2 and PLC activities are under complex regulation by factors that include both PKC activation and [Ca2+i]. PKC exerts dual effects on prostaglandin synthesis via negative regulation of Gp-coupled PI-specific PLC and positive feedback regulation of AA release and PGI2 synthesis. PKC is thus a critical determinant in the regulation of human endothelial cell prostaglandin synthesis by both receptor-mediated and G-protein-dependent cellular activation.

AB - The present study specifically addresses the role of protein kinase C (PKC) activation in human endothelial cell Ca2+ mobilization, a response that is functionally coupled to the production of the potent arachidonate (AA) metabolite, prostacyclin (PGI2). Phorbol 12-myristate 13-acetate (PMA), alpha-thrombin, and sodium fluoride (NaF), a direct G-protein activator, produced a rapid and time-dependent translocation of PKC from the cytosol to the membrane. Activation of PKC by brief pretreatment of human umbilical vein endothelial cell (HUVEC) monolayers with PMA resulted in the inhibition of NaF-induced inositol phosphate increases and attenuation of both alpha-thrombin- and NaF-activated increases in intracellular Ca2+ (Ca2+i). Ca2+ mobilization induced by ionophore A23187 was not affected by PKC preactivation, suggesting PKC-dependent negative feedback inhibition of phosphatidylinositol (PI)-specific phospholipase C (PLC). Agonist-stimulated AA release and PGI2 synthesis in PMA-pretreated cultured human endothelial cells, however, was potentiated, and the enhanced PGI2 synthesis produced by A23187, NaF, and alpha-thrombin was dependent upon the dose of PMA. Treatment of HUVEC monolayers with an intracellular Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid-acetoxymethylester (BAPTA-AM), dramatically reduced alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis, demonstrating the importance of Ca2+i availability in PGI2 synthesis. BAPTA pretreatment did not inhibit PMA-induced PKC activation, and BAPTA-mediated inhibition of agonist-stimulated PGI2 synthesis was partially attenuated by prior PMA pretreatment. Staurosporine, a potent PKC inhibitor, at concentrations that inhibited PKC-induced phosphorylation of histone-1, augmented both alpha-thrombin- and NaF-induced production of inositol phosphates but markedly inhibited alpha-thrombin-, NaF-, and A23187-induced PGI2 synthesis. The downregulation of PKC activity by prolonged PMA treatment (18 h) produced similar inhibition of PGI2 synthesis by these agonists (approximately 50% inhibition). These studies indicate that the integrated phospholipase A2 and PLC activities are under complex regulation by factors that include both PKC activation and [Ca2+i]. PKC exerts dual effects on prostaglandin synthesis via negative regulation of Gp-coupled PI-specific PLC and positive feedback regulation of AA release and PGI2 synthesis. PKC is thus a critical determinant in the regulation of human endothelial cell prostaglandin synthesis by both receptor-mediated and G-protein-dependent cellular activation.

UR - http://www.scopus.com/inward/record.url?scp=0026823432&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026823432&partnerID=8YFLogxK

M3 - Article

VL - 6

SP - 315

EP - 325

JO - American Journal of Respiratory Cell and Molecular Biology

JF - American Journal of Respiratory Cell and Molecular Biology

SN - 1044-1549

IS - 3

ER -