Silver Nanoparticle Protein Corona Composition in Cell Culture Media

Jonathan H. Shannahan, Xianyin Lai, Pu Chun Ke, Ramakrishna Podila, Jared M. Brown, Frank A. Witzmann

Research output: Contribution to journalArticle

121 Citations (Scopus)

Abstract

The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.

Original languageEnglish (US)
Article numbere74001
JournalPLoS ONE
Volume8
Issue number9
DOIs
StatePublished - Sep 9 2013

Fingerprint

Silver Proteins
nanosilver
protein composition
Silver
Cell culture
Nanoparticles
Culture Media
cell culture
Cell Culture Techniques
culture media
Nanostructures
Chemical analysis
Nanostructured materials
Citric Acid
Proteins
proteins
nanomaterials
citrates
Labels
Eagles

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this

Silver Nanoparticle Protein Corona Composition in Cell Culture Media. / Shannahan, Jonathan H.; Lai, Xianyin; Ke, Pu Chun; Podila, Ramakrishna; Brown, Jared M.; Witzmann, Frank A.

In: PLoS ONE, Vol. 8, No. 9, e74001, 09.09.2013.

Research output: Contribution to journalArticle

Shannahan, Jonathan H. ; Lai, Xianyin ; Ke, Pu Chun ; Podila, Ramakrishna ; Brown, Jared M. ; Witzmann, Frank A. / Silver Nanoparticle Protein Corona Composition in Cell Culture Media. In: PLoS ONE. 2013 ; Vol. 8, No. 9.
@article{b7bad986529045e2a03545a4eec2e77c,
title = "Silver Nanoparticle Protein Corona Composition in Cell Culture Media",
abstract = "The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10{\%} fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10{\%} FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.",
author = "Shannahan, {Jonathan H.} and Xianyin Lai and Ke, {Pu Chun} and Ramakrishna Podila and Brown, {Jared M.} and Witzmann, {Frank A.}",
year = "2013",
month = "9",
day = "9",
doi = "10.1371/journal.pone.0074001",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "9",

}

TY - JOUR

T1 - Silver Nanoparticle Protein Corona Composition in Cell Culture Media

AU - Shannahan, Jonathan H.

AU - Lai, Xianyin

AU - Ke, Pu Chun

AU - Podila, Ramakrishna

AU - Brown, Jared M.

AU - Witzmann, Frank A.

PY - 2013/9/9

Y1 - 2013/9/9

N2 - The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.

AB - The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.

UR - http://www.scopus.com/inward/record.url?scp=84883645340&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883645340&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0074001

DO - 10.1371/journal.pone.0074001

M3 - Article

C2 - 24040142

AN - SCOPUS:84883645340

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 9

M1 - e74001

ER -