Simultaneous inhibition of MEK and Hh signaling reduces pancreatic cancer metastasis

Dongsheng Gu, Hai Lin, Xiaoli Zhang, Qipeng Fan, Shaoxiong Chen, Safi Shahda, Yunlong Liu, Jie Sun, Jingwu Xie

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8%. Upon diagnosis, the majority of pancreatic cancer cases (~80%) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45+ cells (particularly Ly6G+CD11b+ cells). We demonstrated that depleting Ly6G+ CD11b+ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G+ CD11b+ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.

Original languageEnglish (US)
Article number403
JournalCancers
Volume10
Issue number11
DOIs
StatePublished - Nov 1 2018

Fingerprint

Hedgehogs
Mitogen-Activated Protein Kinase Kinases
Pancreatic Neoplasms
Neoplasm Metastasis
Cell Proliferation
Neoplasms
Kirsten murine sarcoma virus
MAP Kinase Kinase Kinases
Tumor Microenvironment
Extracellular Signal-Regulated MAP Kinases
Therapeutics
Mitogens
Oncogenes
Transcriptome
Renal Cell Carcinoma
Lung Neoplasms
Adenocarcinoma
Survival Rate
Cell Count

Keywords

  • Hedgehog
  • Ihh
  • MEK
  • Metastatic niche
  • Pancreatic cancer

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Simultaneous inhibition of MEK and Hh signaling reduces pancreatic cancer metastasis. / Gu, Dongsheng; Lin, Hai; Zhang, Xiaoli; Fan, Qipeng; Chen, Shaoxiong; Shahda, Safi; Liu, Yunlong; Sun, Jie; Xie, Jingwu.

In: Cancers, Vol. 10, No. 11, 403, 01.11.2018.

Research output: Contribution to journalArticle

Gu, Dongsheng ; Lin, Hai ; Zhang, Xiaoli ; Fan, Qipeng ; Chen, Shaoxiong ; Shahda, Safi ; Liu, Yunlong ; Sun, Jie ; Xie, Jingwu. / Simultaneous inhibition of MEK and Hh signaling reduces pancreatic cancer metastasis. In: Cancers. 2018 ; Vol. 10, No. 11.
@article{15cef7fd97c74abe9006ff62eeb570ad,
title = "Simultaneous inhibition of MEK and Hh signaling reduces pancreatic cancer metastasis",
abstract = "Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8{\%}. Upon diagnosis, the majority of pancreatic cancer cases (~80{\%}) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45+ cells (particularly Ly6G+CD11b+ cells). We demonstrated that depleting Ly6G+ CD11b+ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G+ CD11b+ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.",
keywords = "Hedgehog, Ihh, MEK, Metastatic niche, Pancreatic cancer",
author = "Dongsheng Gu and Hai Lin and Xiaoli Zhang and Qipeng Fan and Shaoxiong Chen and Safi Shahda and Yunlong Liu and Jie Sun and Jingwu Xie",
year = "2018",
month = "11",
day = "1",
doi = "10.3390/cancers10110403",
language = "English (US)",
volume = "10",
journal = "Cancers",
issn = "2072-6694",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "11",

}

TY - JOUR

T1 - Simultaneous inhibition of MEK and Hh signaling reduces pancreatic cancer metastasis

AU - Gu, Dongsheng

AU - Lin, Hai

AU - Zhang, Xiaoli

AU - Fan, Qipeng

AU - Chen, Shaoxiong

AU - Shahda, Safi

AU - Liu, Yunlong

AU - Sun, Jie

AU - Xie, Jingwu

PY - 2018/11/1

Y1 - 2018/11/1

N2 - Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8%. Upon diagnosis, the majority of pancreatic cancer cases (~80%) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45+ cells (particularly Ly6G+CD11b+ cells). We demonstrated that depleting Ly6G+ CD11b+ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G+ CD11b+ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.

AB - Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8%. Upon diagnosis, the majority of pancreatic cancer cases (~80%) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45+ cells (particularly Ly6G+CD11b+ cells). We demonstrated that depleting Ly6G+ CD11b+ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G+ CD11b+ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.

KW - Hedgehog

KW - Ihh

KW - MEK

KW - Metastatic niche

KW - Pancreatic cancer

UR - http://www.scopus.com/inward/record.url?scp=85056144936&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056144936&partnerID=8YFLogxK

U2 - 10.3390/cancers10110403

DO - 10.3390/cancers10110403

M3 - Article

AN - SCOPUS:85056144936

VL - 10

JO - Cancers

JF - Cancers

SN - 2072-6694

IS - 11

M1 - 403

ER -