Skeletal imaging and management of bone disease.

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Up to 90% of patients with multiple myeloma develop bone lesions. The lesions are purely osteolytic because of increased osteoclast activity and markedly suppressed or absent osteoblast activity. The "gold standard" for imaging myeloma bone lesions is the metastatic bone survey. However, plain radiographs are relatively insensitive and can only demonstrate lytic disease when 30% of trabecular bone loss has occurred. Technicium-99m bone scanning is not appropriate for evaluating myeloma patients since bone scans underestimate the extent of bone involvement in patients with myeloma. The limited reproducibility of bone surveys have led to the use of computerized tomography (CT) scanning, magnetic resonance imaging (MRI) and positron emission tomography (PET) scans to evaluate the extent of bone disease. CT scans are more sensitive than plain radiographs for detecting small lytic lesions, and MRI scans detect marrow involvement by the tumor. PET scans have been used to detect bone lesions in patients with myeloma, are more sensitive than plain radiographs, and have the same sensitivity as MRIs for detecting bone disease in the spine and pelvis. Treatment of myeloma bone disease involves treatment of the underlying malignancy and its manifestations. Current treatments that will be discussed include bisphosphonate therapy, kyphoplasty, vertebroplasty, radiation therapy, and novel agents to suppress osteoclastic bone resorption. In addition, complications with bisphosphonate therapy will be reviewed, in particular, osteonecrosis of the jaw associated with bisphosphonate therapy. As survival of myeloma patients increases, therapies to prevent the complications of aggressive myeloma bone disease become more important.

Original languageEnglish
Pages (from-to)313-319
Number of pages7
JournalHematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program
StatePublished - 2008
Externally publishedYes

Fingerprint

Bone Diseases
Bone and Bones
Diphosphonates
Positron-Emission Tomography
Therapeutics
Bisphosphonate-Associated Osteonecrosis of the Jaw
Tomography
Magnetic Resonance Imaging
Kyphoplasty
Vertebroplasty
Osteoclasts
Bone Resorption
Osteoblasts
Pelvis
Multiple Myeloma
Neoplasms
Spine
Radiotherapy
Bone Marrow
Survival

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{9ac94233677f4e299c46cb11d3c2db8a,
title = "Skeletal imaging and management of bone disease.",
abstract = "Up to 90{\%} of patients with multiple myeloma develop bone lesions. The lesions are purely osteolytic because of increased osteoclast activity and markedly suppressed or absent osteoblast activity. The {"}gold standard{"} for imaging myeloma bone lesions is the metastatic bone survey. However, plain radiographs are relatively insensitive and can only demonstrate lytic disease when 30{\%} of trabecular bone loss has occurred. Technicium-99m bone scanning is not appropriate for evaluating myeloma patients since bone scans underestimate the extent of bone involvement in patients with myeloma. The limited reproducibility of bone surveys have led to the use of computerized tomography (CT) scanning, magnetic resonance imaging (MRI) and positron emission tomography (PET) scans to evaluate the extent of bone disease. CT scans are more sensitive than plain radiographs for detecting small lytic lesions, and MRI scans detect marrow involvement by the tumor. PET scans have been used to detect bone lesions in patients with myeloma, are more sensitive than plain radiographs, and have the same sensitivity as MRIs for detecting bone disease in the spine and pelvis. Treatment of myeloma bone disease involves treatment of the underlying malignancy and its manifestations. Current treatments that will be discussed include bisphosphonate therapy, kyphoplasty, vertebroplasty, radiation therapy, and novel agents to suppress osteoclastic bone resorption. In addition, complications with bisphosphonate therapy will be reviewed, in particular, osteonecrosis of the jaw associated with bisphosphonate therapy. As survival of myeloma patients increases, therapies to prevent the complications of aggressive myeloma bone disease become more important.",
author = "Roodman, {G. David}",
year = "2008",
language = "English",
pages = "313--319",
journal = "Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program",
issn = "1520-4391",
publisher = "American Society of Hematology",

}

TY - JOUR

T1 - Skeletal imaging and management of bone disease.

AU - Roodman, G. David

PY - 2008

Y1 - 2008

N2 - Up to 90% of patients with multiple myeloma develop bone lesions. The lesions are purely osteolytic because of increased osteoclast activity and markedly suppressed or absent osteoblast activity. The "gold standard" for imaging myeloma bone lesions is the metastatic bone survey. However, plain radiographs are relatively insensitive and can only demonstrate lytic disease when 30% of trabecular bone loss has occurred. Technicium-99m bone scanning is not appropriate for evaluating myeloma patients since bone scans underestimate the extent of bone involvement in patients with myeloma. The limited reproducibility of bone surveys have led to the use of computerized tomography (CT) scanning, magnetic resonance imaging (MRI) and positron emission tomography (PET) scans to evaluate the extent of bone disease. CT scans are more sensitive than plain radiographs for detecting small lytic lesions, and MRI scans detect marrow involvement by the tumor. PET scans have been used to detect bone lesions in patients with myeloma, are more sensitive than plain radiographs, and have the same sensitivity as MRIs for detecting bone disease in the spine and pelvis. Treatment of myeloma bone disease involves treatment of the underlying malignancy and its manifestations. Current treatments that will be discussed include bisphosphonate therapy, kyphoplasty, vertebroplasty, radiation therapy, and novel agents to suppress osteoclastic bone resorption. In addition, complications with bisphosphonate therapy will be reviewed, in particular, osteonecrosis of the jaw associated with bisphosphonate therapy. As survival of myeloma patients increases, therapies to prevent the complications of aggressive myeloma bone disease become more important.

AB - Up to 90% of patients with multiple myeloma develop bone lesions. The lesions are purely osteolytic because of increased osteoclast activity and markedly suppressed or absent osteoblast activity. The "gold standard" for imaging myeloma bone lesions is the metastatic bone survey. However, plain radiographs are relatively insensitive and can only demonstrate lytic disease when 30% of trabecular bone loss has occurred. Technicium-99m bone scanning is not appropriate for evaluating myeloma patients since bone scans underestimate the extent of bone involvement in patients with myeloma. The limited reproducibility of bone surveys have led to the use of computerized tomography (CT) scanning, magnetic resonance imaging (MRI) and positron emission tomography (PET) scans to evaluate the extent of bone disease. CT scans are more sensitive than plain radiographs for detecting small lytic lesions, and MRI scans detect marrow involvement by the tumor. PET scans have been used to detect bone lesions in patients with myeloma, are more sensitive than plain radiographs, and have the same sensitivity as MRIs for detecting bone disease in the spine and pelvis. Treatment of myeloma bone disease involves treatment of the underlying malignancy and its manifestations. Current treatments that will be discussed include bisphosphonate therapy, kyphoplasty, vertebroplasty, radiation therapy, and novel agents to suppress osteoclastic bone resorption. In addition, complications with bisphosphonate therapy will be reviewed, in particular, osteonecrosis of the jaw associated with bisphosphonate therapy. As survival of myeloma patients increases, therapies to prevent the complications of aggressive myeloma bone disease become more important.

UR - http://www.scopus.com/inward/record.url?scp=67651156298&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67651156298&partnerID=8YFLogxK

M3 - Article

SP - 313

EP - 319

JO - Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program

JF - Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program

SN - 1520-4391

ER -