Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis

Dean A. Wiseman, Michael A. Kalwat, Debbie C. Thurmond

Research output: Contribution to journalArticle

35 Scopus citations

Abstract

Glucose-stimulated insulin release from pancreatic islet β-cells involves increased levels of reactive oxygen and nitrogen species. Although this is normal, under pathophysiological conditions such as chronic hyperglycemia and inflammation, insulin exocytosis fails, and yet the mechanistic reason for failure is unclear. Hypothesizing that exocytotic proteins might be targets of S-nitrosylation, with their dysfunction under conditions of nitrosative stress serving as a mechanistic basis for insulin secretory dysfunction, we identified the t-SNARE protein Syntaxin 4 as a target of modification by S-nitrosylation. The cellular content of S-nitrosylated Syntaxin 4 peaked acutely, within 5 min of glucose stimulation in both human islets and MIN6 β-cells, corresponding to the time at which Syntaxin 4 activation was detectable. S-Nitrosylation was mapped to Syntaxin 4 residue Cys141, located within the Hc domain predicted to increase accessibility for v-SNARE interaction. A C141S-Syntaxin 4 mutant resisted S-nitrosylation induced in vitro by the nitric oxide donor compound S-nitroso-L-glutathione, failed to exhibit glucose-induced activation and VAMP2 binding, and failed to potentiate insulin release akin to that of wild-type Syntaxin 4. Strikingly, S-nitrosylation of Syntaxin 4 could be induced by acute treatment with inflammatory cytokines (TNFα, IL-1β, and IFNγ), coordinate with inappropriate Syntaxin 4 activation and insulin release in the absence of the glucose stimulus, consistent with nitrosative stress and dysfunctional exocytosis, preceding the cell dysfunction and death associated with more chronic stimulation (24 h). Taken together, these data indicate a significant role for reactive nitrogen species in the insulin exocytosis mechanism in β-cells and expose a potential pathophysiological exploitation of this mechanism to underlie dysfunctional exocytosis.

Original languageEnglish (US)
Pages (from-to)16344-16354
Number of pages11
JournalJournal of Biological Chemistry
Volume286
Issue number18
DOIs
StatePublished - May 6 2011

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Stimulus-induced S-nitrosylation of syntaxin 4 impacts insulin granule exocytosis'. Together they form a unique fingerprint.

  • Cite this