Stoppage

An issue for segregation analysis

S. L. Slager, Tatiana Foroud, F. Haghighi, M. A. Spence, S. E. Hodge

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Segregation analysis assumes that the observed family-size distribution (FSD), i.e., distribution of number of offspring among nuclear families, is independent of the segregation ratio p. However, for certain serious diseases with early onset and diagnosis (e.g., autism), parents may change their original desired family size, based on having one or more affected children, thus violating that assumption. Here we investigate "stoppage," the situation in which such parents have fewer children than originally planned. Following Brookfield et al. [J Med Genet 25:181-185, 1988], we define a stoppage probability d that after the birth of an affected child, parents will stop having children and thus not reach their original desired family size. We first derive the full correct likelihood for a simple segregation analysis as a function of p, d, and the ascertainment probability π. We show that p can be estimated from this likelihood if the FSD is known. Then, we show that under "random" ascertainment, the presence of stoppage does not bias estimates of p. However, for other ascertainment schemes, we show that is not the case. We use a simulation study to assess the magnitude of bias, and we demonstrate that ignoring the effect of stoppage can seriously bias the estimates of p when the FSD is ignored. In conclusion, stoppage, a realistic scenario for some complex diseases, can represent a serious and potentially intractable problem for segregation analysis.

Original languageEnglish
Pages (from-to)328-339
Number of pages12
JournalGenetic Epidemiology
Volume20
Issue number3
DOIs
StatePublished - 2001

Fingerprint

Parents
Viverridae
Autistic Disorder
Nuclear Family
Early Diagnosis
Parturition

Keywords

  • Ascertainment models
  • Complex disease
  • Segregation ratio
  • Sequential sampling

ASJC Scopus subject areas

  • Genetics(clinical)
  • Epidemiology

Cite this

Slager, S. L., Foroud, T., Haghighi, F., Spence, M. A., & Hodge, S. E. (2001). Stoppage: An issue for segregation analysis. Genetic Epidemiology, 20(3), 328-339. https://doi.org/10.1002/gepi.4

Stoppage : An issue for segregation analysis. / Slager, S. L.; Foroud, Tatiana; Haghighi, F.; Spence, M. A.; Hodge, S. E.

In: Genetic Epidemiology, Vol. 20, No. 3, 2001, p. 328-339.

Research output: Contribution to journalArticle

Slager, SL, Foroud, T, Haghighi, F, Spence, MA & Hodge, SE 2001, 'Stoppage: An issue for segregation analysis', Genetic Epidemiology, vol. 20, no. 3, pp. 328-339. https://doi.org/10.1002/gepi.4
Slager, S. L. ; Foroud, Tatiana ; Haghighi, F. ; Spence, M. A. ; Hodge, S. E. / Stoppage : An issue for segregation analysis. In: Genetic Epidemiology. 2001 ; Vol. 20, No. 3. pp. 328-339.
@article{482524955ecd44d7ab46e69eef1528b5,
title = "Stoppage: An issue for segregation analysis",
abstract = "Segregation analysis assumes that the observed family-size distribution (FSD), i.e., distribution of number of offspring among nuclear families, is independent of the segregation ratio p. However, for certain serious diseases with early onset and diagnosis (e.g., autism), parents may change their original desired family size, based on having one or more affected children, thus violating that assumption. Here we investigate {"}stoppage,{"} the situation in which such parents have fewer children than originally planned. Following Brookfield et al. [J Med Genet 25:181-185, 1988], we define a stoppage probability d that after the birth of an affected child, parents will stop having children and thus not reach their original desired family size. We first derive the full correct likelihood for a simple segregation analysis as a function of p, d, and the ascertainment probability π. We show that p can be estimated from this likelihood if the FSD is known. Then, we show that under {"}random{"} ascertainment, the presence of stoppage does not bias estimates of p. However, for other ascertainment schemes, we show that is not the case. We use a simulation study to assess the magnitude of bias, and we demonstrate that ignoring the effect of stoppage can seriously bias the estimates of p when the FSD is ignored. In conclusion, stoppage, a realistic scenario for some complex diseases, can represent a serious and potentially intractable problem for segregation analysis.",
keywords = "Ascertainment models, Complex disease, Segregation ratio, Sequential sampling",
author = "Slager, {S. L.} and Tatiana Foroud and F. Haghighi and Spence, {M. A.} and Hodge, {S. E.}",
year = "2001",
doi = "10.1002/gepi.4",
language = "English",
volume = "20",
pages = "328--339",
journal = "Genetic Epidemiology",
issn = "0741-0395",
publisher = "Wiley-Liss Inc.",
number = "3",

}

TY - JOUR

T1 - Stoppage

T2 - An issue for segregation analysis

AU - Slager, S. L.

AU - Foroud, Tatiana

AU - Haghighi, F.

AU - Spence, M. A.

AU - Hodge, S. E.

PY - 2001

Y1 - 2001

N2 - Segregation analysis assumes that the observed family-size distribution (FSD), i.e., distribution of number of offspring among nuclear families, is independent of the segregation ratio p. However, for certain serious diseases with early onset and diagnosis (e.g., autism), parents may change their original desired family size, based on having one or more affected children, thus violating that assumption. Here we investigate "stoppage," the situation in which such parents have fewer children than originally planned. Following Brookfield et al. [J Med Genet 25:181-185, 1988], we define a stoppage probability d that after the birth of an affected child, parents will stop having children and thus not reach their original desired family size. We first derive the full correct likelihood for a simple segregation analysis as a function of p, d, and the ascertainment probability π. We show that p can be estimated from this likelihood if the FSD is known. Then, we show that under "random" ascertainment, the presence of stoppage does not bias estimates of p. However, for other ascertainment schemes, we show that is not the case. We use a simulation study to assess the magnitude of bias, and we demonstrate that ignoring the effect of stoppage can seriously bias the estimates of p when the FSD is ignored. In conclusion, stoppage, a realistic scenario for some complex diseases, can represent a serious and potentially intractable problem for segregation analysis.

AB - Segregation analysis assumes that the observed family-size distribution (FSD), i.e., distribution of number of offspring among nuclear families, is independent of the segregation ratio p. However, for certain serious diseases with early onset and diagnosis (e.g., autism), parents may change their original desired family size, based on having one or more affected children, thus violating that assumption. Here we investigate "stoppage," the situation in which such parents have fewer children than originally planned. Following Brookfield et al. [J Med Genet 25:181-185, 1988], we define a stoppage probability d that after the birth of an affected child, parents will stop having children and thus not reach their original desired family size. We first derive the full correct likelihood for a simple segregation analysis as a function of p, d, and the ascertainment probability π. We show that p can be estimated from this likelihood if the FSD is known. Then, we show that under "random" ascertainment, the presence of stoppage does not bias estimates of p. However, for other ascertainment schemes, we show that is not the case. We use a simulation study to assess the magnitude of bias, and we demonstrate that ignoring the effect of stoppage can seriously bias the estimates of p when the FSD is ignored. In conclusion, stoppage, a realistic scenario for some complex diseases, can represent a serious and potentially intractable problem for segregation analysis.

KW - Ascertainment models

KW - Complex disease

KW - Segregation ratio

KW - Sequential sampling

UR - http://www.scopus.com/inward/record.url?scp=0035076652&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035076652&partnerID=8YFLogxK

U2 - 10.1002/gepi.4

DO - 10.1002/gepi.4

M3 - Article

VL - 20

SP - 328

EP - 339

JO - Genetic Epidemiology

JF - Genetic Epidemiology

SN - 0741-0395

IS - 3

ER -