Stresses developed during clinical debonding of stainless steel orthodontic brackets

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

The purpose of this project was to use finite element modeling to calculate and compare the peak stresses generated during clinical debonding of resin bonded brackets. Five debonding techniques were considered: tension, shear-peel, torsion loads on the bracket, wedging of the cement margin, and bracket temperature increase. The data is presented in terms of the relative potentials of the methods for causing enamel fracture. That is, in this idealized model, it was assumed that enamel failures were governed by maximum principal or shear stress. Therefore, all debonding loads and calculated stresses were scaled to correspond to unit peak principal stress or unit peak shear stress in enamel. Furthermore, it was assumed that cement cohesive failure was also governed by maximum principal or maximum shear stress and that adhesive failures were caused by interface normal or shear stress. Thus, for example, it was found that for 1.0 MPa of peak shear stress in enamel, tension and shear-peel debonding generate, respectively, 1.34 and 0.96 MPa of peak normal (tensile) stress in the cement at the enamel-cement interface. The interpretation of this information is that tension debonding is less likely to cause enamel damage than shear-peel loading if it is assumed that (1) the enamel would fail due to the high shear stress, and (2) the joint would fail at the enamel-cement interface because its normal stress limit has been exceeded.

Original languageEnglish
Pages (from-to)39-46
Number of pages8
JournalAngle Orthodontist
Volume67
Issue number1
StatePublished - 1997
Externally publishedYes

Fingerprint

Orthodontic Brackets
Stainless Steel
Dental Enamel
Adhesives
Joints
Temperature

Keywords

  • Debonding
  • Dental stress analysis
  • Orthodontic brackets

ASJC Scopus subject areas

  • Dentistry(all)

Cite this

Stresses developed during clinical debonding of stainless steel orthodontic brackets. / Katona, Thomas.

In: Angle Orthodontist, Vol. 67, No. 1, 1997, p. 39-46.

Research output: Contribution to journalArticle

@article{1ba02311c4574848bd67bd31e1f42448,
title = "Stresses developed during clinical debonding of stainless steel orthodontic brackets",
abstract = "The purpose of this project was to use finite element modeling to calculate and compare the peak stresses generated during clinical debonding of resin bonded brackets. Five debonding techniques were considered: tension, shear-peel, torsion loads on the bracket, wedging of the cement margin, and bracket temperature increase. The data is presented in terms of the relative potentials of the methods for causing enamel fracture. That is, in this idealized model, it was assumed that enamel failures were governed by maximum principal or shear stress. Therefore, all debonding loads and calculated stresses were scaled to correspond to unit peak principal stress or unit peak shear stress in enamel. Furthermore, it was assumed that cement cohesive failure was also governed by maximum principal or maximum shear stress and that adhesive failures were caused by interface normal or shear stress. Thus, for example, it was found that for 1.0 MPa of peak shear stress in enamel, tension and shear-peel debonding generate, respectively, 1.34 and 0.96 MPa of peak normal (tensile) stress in the cement at the enamel-cement interface. The interpretation of this information is that tension debonding is less likely to cause enamel damage than shear-peel loading if it is assumed that (1) the enamel would fail due to the high shear stress, and (2) the joint would fail at the enamel-cement interface because its normal stress limit has been exceeded.",
keywords = "Debonding, Dental stress analysis, Orthodontic brackets",
author = "Thomas Katona",
year = "1997",
language = "English",
volume = "67",
pages = "39--46",
journal = "Angle Orthodontist",
issn = "0003-3219",
publisher = "E H Angle Orthodontists Research & Education Foundation, Inc.",
number = "1",

}

TY - JOUR

T1 - Stresses developed during clinical debonding of stainless steel orthodontic brackets

AU - Katona, Thomas

PY - 1997

Y1 - 1997

N2 - The purpose of this project was to use finite element modeling to calculate and compare the peak stresses generated during clinical debonding of resin bonded brackets. Five debonding techniques were considered: tension, shear-peel, torsion loads on the bracket, wedging of the cement margin, and bracket temperature increase. The data is presented in terms of the relative potentials of the methods for causing enamel fracture. That is, in this idealized model, it was assumed that enamel failures were governed by maximum principal or shear stress. Therefore, all debonding loads and calculated stresses were scaled to correspond to unit peak principal stress or unit peak shear stress in enamel. Furthermore, it was assumed that cement cohesive failure was also governed by maximum principal or maximum shear stress and that adhesive failures were caused by interface normal or shear stress. Thus, for example, it was found that for 1.0 MPa of peak shear stress in enamel, tension and shear-peel debonding generate, respectively, 1.34 and 0.96 MPa of peak normal (tensile) stress in the cement at the enamel-cement interface. The interpretation of this information is that tension debonding is less likely to cause enamel damage than shear-peel loading if it is assumed that (1) the enamel would fail due to the high shear stress, and (2) the joint would fail at the enamel-cement interface because its normal stress limit has been exceeded.

AB - The purpose of this project was to use finite element modeling to calculate and compare the peak stresses generated during clinical debonding of resin bonded brackets. Five debonding techniques were considered: tension, shear-peel, torsion loads on the bracket, wedging of the cement margin, and bracket temperature increase. The data is presented in terms of the relative potentials of the methods for causing enamel fracture. That is, in this idealized model, it was assumed that enamel failures were governed by maximum principal or shear stress. Therefore, all debonding loads and calculated stresses were scaled to correspond to unit peak principal stress or unit peak shear stress in enamel. Furthermore, it was assumed that cement cohesive failure was also governed by maximum principal or maximum shear stress and that adhesive failures were caused by interface normal or shear stress. Thus, for example, it was found that for 1.0 MPa of peak shear stress in enamel, tension and shear-peel debonding generate, respectively, 1.34 and 0.96 MPa of peak normal (tensile) stress in the cement at the enamel-cement interface. The interpretation of this information is that tension debonding is less likely to cause enamel damage than shear-peel loading if it is assumed that (1) the enamel would fail due to the high shear stress, and (2) the joint would fail at the enamel-cement interface because its normal stress limit has been exceeded.

KW - Debonding

KW - Dental stress analysis

KW - Orthodontic brackets

UR - http://www.scopus.com/inward/record.url?scp=0030635632&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030635632&partnerID=8YFLogxK

M3 - Article

C2 - 9046398

AN - SCOPUS:0030635632

VL - 67

SP - 39

EP - 46

JO - Angle Orthodontist

JF - Angle Orthodontist

SN - 0003-3219

IS - 1

ER -