Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer

Wenjie Jessie Lu, Zeruesenay Desta, David A. Flockhart

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl- tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K i values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen >>> Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex, and the biologic mechanisms that underlie these relationships may include aromatase inhibition.

Original languageEnglish
Pages (from-to)473-481
Number of pages9
JournalBreast Cancer Research and Treatment
Volume131
Issue number2
DOIs
StatePublished - Jan 2012

Fingerprint

Aromatase Inhibitors
Tamoxifen
Breast Neoplasms
Aromatase
Estrogens
Testosterone
Microsomes
Human Activities
4-hydroxy-N-desmethyltamoxifen
Estradiol

Keywords

  • Aromatase inhibitor
  • Breast cancer
  • Endoxifen
  • Estrogen
  • Tamoxifen

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. / Lu, Wenjie Jessie; Desta, Zeruesenay; Flockhart, David A.

In: Breast Cancer Research and Treatment, Vol. 131, No. 2, 01.2012, p. 473-481.

Research output: Contribution to journalArticle

@article{724c200148e94facaf0130b654cd893c,
title = "Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer",
abstract = "The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl- tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K i values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen >>> Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex, and the biologic mechanisms that underlie these relationships may include aromatase inhibition.",
keywords = "Aromatase inhibitor, Breast cancer, Endoxifen, Estrogen, Tamoxifen",
author = "Lu, {Wenjie Jessie} and Zeruesenay Desta and Flockhart, {David A.}",
year = "2012",
month = "1",
doi = "10.1007/s10549-011-1428-z",
language = "English",
volume = "131",
pages = "473--481",
journal = "Breast Cancer Research and Treatment",
issn = "0167-6806",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer

AU - Lu, Wenjie Jessie

AU - Desta, Zeruesenay

AU - Flockhart, David A.

PY - 2012/1

Y1 - 2012/1

N2 - The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl- tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K i values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen >>> Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex, and the biologic mechanisms that underlie these relationships may include aromatase inhibition.

AB - The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl- tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K i values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen >>> Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex, and the biologic mechanisms that underlie these relationships may include aromatase inhibition.

KW - Aromatase inhibitor

KW - Breast cancer

KW - Endoxifen

KW - Estrogen

KW - Tamoxifen

UR - http://www.scopus.com/inward/record.url?scp=84856234626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84856234626&partnerID=8YFLogxK

U2 - 10.1007/s10549-011-1428-z

DO - 10.1007/s10549-011-1428-z

M3 - Article

C2 - 21390495

AN - SCOPUS:84856234626

VL - 131

SP - 473

EP - 481

JO - Breast Cancer Research and Treatment

JF - Breast Cancer Research and Treatment

SN - 0167-6806

IS - 2

ER -