The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain

Jun Nan Li, Patrick Sheets

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Key points: The central nucleus of the amygdala (CeA) encompasses the main output pathways of the amygdala, a temporal lobe structure essential in affective and cognitive dimensions of pain. A major population of neurons in the CeA send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. CeA-PAG neurons are topographically organized based on their targeted subregion within the PAG. PAG-projecting neurons in the central medial (CeM) and central lateral (CeL) regions of CeA are intrinsically distinct. CeL-PAG neurons are a homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered in the complete Freund's adjuvant model of inflammatory pain. Abstract: A major population of neurons in the central nucleus of amygdala (CeA) send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. While the CeA-PAG pathway has proved to be a component of descending anti-nociceptive circuitry, the functional organization of CeA-PAG neurons remains unclear. We identified CeA-PAG neurons in C57BL/6 mice of both sexes using intracranial injection of a fluorescent retrograde tracer into the PAG. In acute brain slices, we investigated the topographical and intrinsic characteristics of retrogradely labelled CeA-PAG neurons using epifluorescence and whole-cell electrophysiology. We also measured changes to CeA-PAG neurons in the complete Freund's adjuvant (CFA) model of inflammatory pain. Neurons in the central lateral (CeL) and central medial (CeM) amygdala project primarily to different regions of the PAG. CeL-PAG neurons consist of a relatively homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered 1 day after induction of the CFA inflammatory pain model. Collectively, our results provide insight into pain-induced changes to a specific population of CeA neurons that probably play a key role in the integration of noxious input with endogenous analgesia and behavioural coping response.

Original languageEnglish (US)
JournalJournal of Physiology
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

Periaqueductal Gray
Neurons
Pain
Freund's Adjuvant
Central Amygdaloid Nucleus
Population
Mesencephalon
Membranes
Electrophysiology

Keywords

  • brain slice
  • central amygdala
  • electrophysiology
  • inflammatory pain
  • periaqueductal gray

ASJC Scopus subject areas

  • Physiology

Cite this

@article{5a5f4e389d7e4426b3a0be70d1fb2b2c,
title = "The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain",
abstract = "Key points: The central nucleus of the amygdala (CeA) encompasses the main output pathways of the amygdala, a temporal lobe structure essential in affective and cognitive dimensions of pain. A major population of neurons in the CeA send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. CeA-PAG neurons are topographically organized based on their targeted subregion within the PAG. PAG-projecting neurons in the central medial (CeM) and central lateral (CeL) regions of CeA are intrinsically distinct. CeL-PAG neurons are a homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered in the complete Freund's adjuvant model of inflammatory pain. Abstract: A major population of neurons in the central nucleus of amygdala (CeA) send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. While the CeA-PAG pathway has proved to be a component of descending anti-nociceptive circuitry, the functional organization of CeA-PAG neurons remains unclear. We identified CeA-PAG neurons in C57BL/6 mice of both sexes using intracranial injection of a fluorescent retrograde tracer into the PAG. In acute brain slices, we investigated the topographical and intrinsic characteristics of retrogradely labelled CeA-PAG neurons using epifluorescence and whole-cell electrophysiology. We also measured changes to CeA-PAG neurons in the complete Freund's adjuvant (CFA) model of inflammatory pain. Neurons in the central lateral (CeL) and central medial (CeM) amygdala project primarily to different regions of the PAG. CeL-PAG neurons consist of a relatively homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered 1 day after induction of the CFA inflammatory pain model. Collectively, our results provide insight into pain-induced changes to a specific population of CeA neurons that probably play a key role in the integration of noxious input with endogenous analgesia and behavioural coping response.",
keywords = "brain slice, central amygdala, electrophysiology, inflammatory pain, periaqueductal gray",
author = "Li, {Jun Nan} and Patrick Sheets",
year = "2018",
month = "1",
day = "1",
doi = "10.1113/JP276935",
language = "English (US)",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain

AU - Li, Jun Nan

AU - Sheets, Patrick

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Key points: The central nucleus of the amygdala (CeA) encompasses the main output pathways of the amygdala, a temporal lobe structure essential in affective and cognitive dimensions of pain. A major population of neurons in the CeA send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. CeA-PAG neurons are topographically organized based on their targeted subregion within the PAG. PAG-projecting neurons in the central medial (CeM) and central lateral (CeL) regions of CeA are intrinsically distinct. CeL-PAG neurons are a homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered in the complete Freund's adjuvant model of inflammatory pain. Abstract: A major population of neurons in the central nucleus of amygdala (CeA) send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. While the CeA-PAG pathway has proved to be a component of descending anti-nociceptive circuitry, the functional organization of CeA-PAG neurons remains unclear. We identified CeA-PAG neurons in C57BL/6 mice of both sexes using intracranial injection of a fluorescent retrograde tracer into the PAG. In acute brain slices, we investigated the topographical and intrinsic characteristics of retrogradely labelled CeA-PAG neurons using epifluorescence and whole-cell electrophysiology. We also measured changes to CeA-PAG neurons in the complete Freund's adjuvant (CFA) model of inflammatory pain. Neurons in the central lateral (CeL) and central medial (CeM) amygdala project primarily to different regions of the PAG. CeL-PAG neurons consist of a relatively homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered 1 day after induction of the CFA inflammatory pain model. Collectively, our results provide insight into pain-induced changes to a specific population of CeA neurons that probably play a key role in the integration of noxious input with endogenous analgesia and behavioural coping response.

AB - Key points: The central nucleus of the amygdala (CeA) encompasses the main output pathways of the amygdala, a temporal lobe structure essential in affective and cognitive dimensions of pain. A major population of neurons in the CeA send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. CeA-PAG neurons are topographically organized based on their targeted subregion within the PAG. PAG-projecting neurons in the central medial (CeM) and central lateral (CeL) regions of CeA are intrinsically distinct. CeL-PAG neurons are a homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered in the complete Freund's adjuvant model of inflammatory pain. Abstract: A major population of neurons in the central nucleus of amygdala (CeA) send projections to the periaqueductal gray (PAG), a key midbrain structure that mediates coping strategies in response to threat or stress. While the CeA-PAG pathway has proved to be a component of descending anti-nociceptive circuitry, the functional organization of CeA-PAG neurons remains unclear. We identified CeA-PAG neurons in C57BL/6 mice of both sexes using intracranial injection of a fluorescent retrograde tracer into the PAG. In acute brain slices, we investigated the topographical and intrinsic characteristics of retrogradely labelled CeA-PAG neurons using epifluorescence and whole-cell electrophysiology. We also measured changes to CeA-PAG neurons in the complete Freund's adjuvant (CFA) model of inflammatory pain. Neurons in the central lateral (CeL) and central medial (CeM) amygdala project primarily to different regions of the PAG. CeL-PAG neurons consist of a relatively homogeneous population of intrinsically distinct neurons while CeM-PAG neurons are intrinsically heterogeneous. Membrane properties of distinct CeM-PAG subtypes are altered 1 day after induction of the CFA inflammatory pain model. Collectively, our results provide insight into pain-induced changes to a specific population of CeA neurons that probably play a key role in the integration of noxious input with endogenous analgesia and behavioural coping response.

KW - brain slice

KW - central amygdala

KW - electrophysiology

KW - inflammatory pain

KW - periaqueductal gray

UR - http://www.scopus.com/inward/record.url?scp=85055954736&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055954736&partnerID=8YFLogxK

U2 - 10.1113/JP276935

DO - 10.1113/JP276935

M3 - Article

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

ER -