The CryoAPEX method for electron microscopy analysis of membrane protein localization within ultrastructurally-preserved cells

Elaine M. Mihelc, Stephanie Angel, Robert V. Stahelin, Seema Mattoo

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Key cellular events like signal transduction and membrane trafficking rely on proper protein location within cellular compartments. Understanding precise subcellular localization of proteins is thus important for answering many biological questions. The quest for a robust label to identify protein localization combined with adequate cellular preservation and staining has been historically challenging. Recent advances in electron microscopy (EM) imaging have led to the development of many methods and strategies to increase cellular preservation and label target proteins. A relatively new peroxidase-based genetic tag, APEX2, is a promising leader in cloneable EM-active tags. Sample preparation for transmission electron microscopy (TEM) has also advanced in recent years with the advent of cryofixation by high pressure freezing (HPF) and low-temperature dehydration and staining via freeze substitution (FS). HPF and FS provide excellent preservation of cellular ultrastructure for TEM imaging, second only to direct cryo-imaging of vitreous samples. Here we present a protocol for the cryoAPEX method, which combines the use of the APEX2 tag with HPF and FS. In this protocol, a protein of interest is tagged with APEX2, followed by chemical fixation and the peroxidase reaction. In place of traditional staining and alcohol dehydration at room temperature, the sample is cryofixed and undergoes dehydration and staining at low temperature via FS. Using cryoAPEX, not only can a protein of interest be identified within subcellular compartments, but also additional information can be resolved with respect to its topology within a structurally preserved membrane. We show that this method can provide high enough resolution to decipher protein distribution patterns within an organelle lumen, and to distinguish the compartmentalization of a protein within one organelle in close proximity to other unlabeled organelles. Further, cryoAPEX is procedurally straightforward and amenable to cells grown in tissue culture. It is no more technically challenging than typical cryofixation and freeze substitution methods. CryoAPEX is widely applicable for TEM analysis of any membrane protein that can be genetically tagged.

Original languageEnglish (US)
Article numbere60677
JournalJournal of Visualized Experiments
Volume2020
Issue number156
DOIs
StatePublished - Feb 2020
Externally publishedYes

Keywords

  • APEX2
  • Biology
  • CryoAPEX
  • Cryofixation
  • Freeze substitution
  • High pressure freezing
  • Issue 156
  • Membrane protein
  • Transmission electron microscopy

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'The CryoAPEX method for electron microscopy analysis of membrane protein localization within ultrastructurally-preserved cells'. Together they form a unique fingerprint.

  • Cite this