The effect of lethal acid stress on Na+/H+ exchanger isoforms in cultured inner medullary collecting duct cells: deletion of NHE-2 and over expression of NHE-1

Gurinder Singh, James A. McAteer, Manoocher Soleimani

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Cultured inner medullary collecting duct (mIMCD-3) cells express Na+/H+ exchanger isoforms NHE-2 and NHE-1 (Soleimani et al. (1994) J. Biol. Chem. 269, 27973-27978). In the present studies we examined the effect of lethal acid stress on Na+/H+ exchanger activity and isoform expression in mIMCD-3 cells. mIMCD-3 cells were incubated for 10 min with 20 mM ammonium, and exposed to an ammonium-free acidic solution (pH 6.0) for 120 min. Thereafter, cells were recovered and grown in normal culture media. The surviving clones were isolated and subjected to two additional cycles of acid stress. A mutant clone was isolated and characterized for Na+/H+ exchange activity and isoform expression. The mutant mIMCD-3 clone demonstrated significant over-expression of Na+/H+ exchange activity as assessed by acid-stimulated 22Na influx (11.56 nmol/mg protein in mutant vs. 4.06 nmol/mg in parent cells, P < 0.001, n = 4) and sodium-dependent pHi recovery from an acid load (0.55 pH/min in mutant vs. 0.28 pH/min in parent cells, P < 0.01, n = 6). A dose-response inhibition of the exchanger showed that the mutant cells were very sensitive to dimethylamiloride (IC50 158 nM in mutant vs. 889 nM in parent mIMCD-3 cells, P < 0.001). To compare the Na+/H+ exchanger isoforms in mutant and parent mIMCD-3 cells, poly(A)+ RNA was isolated from each group and probed with radiolabeled NHE-1 or NHE-2 cDNA. The expression of NHE-1 mRNA was increased by ∼100% in mutant cells. The NHE-2 mRNA, on the other hand, was found to be absent in mutant mIMCD-3 cells. Examination of the regulatory mechanisms of the Na+/H+ exchanger isoforms in parent mIMCD-3 cells, which express NHE-2 and NHE-1, and mutant mIMCD-3 cells, which only express NHE-1, would be helpful in elucidating the roles of NHE-2 and NHE-1 in inner medullary collecting duct cells.

Original languageEnglish
Pages (from-to)74-80
Number of pages7
JournalBiochimica et Biophysica Acta - Biomembranes
Volume1239
Issue number1
DOIs
StatePublished - Oct 4 1995

Fingerprint

Sodium-Hydrogen Antiporter
Ducts
Protein Isoforms
Acids
Ammonium Compounds
Messenger RNA
Culture Media
Clone Cells
Complementary DNA
Sodium
Recovery
Proteins
Mutant Proteins
Inhibitory Concentration 50

Keywords

  • (mIMCD-3 cell)
  • Acid stress
  • Isoform
  • NHE-1
  • NHE-2
  • Sodium ion-proton exchanger

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Cell Biology

Cite this

The effect of lethal acid stress on Na+/H+ exchanger isoforms in cultured inner medullary collecting duct cells : deletion of NHE-2 and over expression of NHE-1. / Singh, Gurinder; McAteer, James A.; Soleimani, Manoocher.

In: Biochimica et Biophysica Acta - Biomembranes, Vol. 1239, No. 1, 04.10.1995, p. 74-80.

Research output: Contribution to journalArticle

@article{3b4d491f027f4e00b8452b7480677aa0,
title = "The effect of lethal acid stress on Na+/H+ exchanger isoforms in cultured inner medullary collecting duct cells: deletion of NHE-2 and over expression of NHE-1",
abstract = "Cultured inner medullary collecting duct (mIMCD-3) cells express Na+/H+ exchanger isoforms NHE-2 and NHE-1 (Soleimani et al. (1994) J. Biol. Chem. 269, 27973-27978). In the present studies we examined the effect of lethal acid stress on Na+/H+ exchanger activity and isoform expression in mIMCD-3 cells. mIMCD-3 cells were incubated for 10 min with 20 mM ammonium, and exposed to an ammonium-free acidic solution (pH 6.0) for 120 min. Thereafter, cells were recovered and grown in normal culture media. The surviving clones were isolated and subjected to two additional cycles of acid stress. A mutant clone was isolated and characterized for Na+/H+ exchange activity and isoform expression. The mutant mIMCD-3 clone demonstrated significant over-expression of Na+/H+ exchange activity as assessed by acid-stimulated 22Na influx (11.56 nmol/mg protein in mutant vs. 4.06 nmol/mg in parent cells, P < 0.001, n = 4) and sodium-dependent pHi recovery from an acid load (0.55 pH/min in mutant vs. 0.28 pH/min in parent cells, P < 0.01, n = 6). A dose-response inhibition of the exchanger showed that the mutant cells were very sensitive to dimethylamiloride (IC50 158 nM in mutant vs. 889 nM in parent mIMCD-3 cells, P < 0.001). To compare the Na+/H+ exchanger isoforms in mutant and parent mIMCD-3 cells, poly(A)+ RNA was isolated from each group and probed with radiolabeled NHE-1 or NHE-2 cDNA. The expression of NHE-1 mRNA was increased by ∼100{\%} in mutant cells. The NHE-2 mRNA, on the other hand, was found to be absent in mutant mIMCD-3 cells. Examination of the regulatory mechanisms of the Na+/H+ exchanger isoforms in parent mIMCD-3 cells, which express NHE-2 and NHE-1, and mutant mIMCD-3 cells, which only express NHE-1, would be helpful in elucidating the roles of NHE-2 and NHE-1 in inner medullary collecting duct cells.",
keywords = "(mIMCD-3 cell), Acid stress, Isoform, NHE-1, NHE-2, Sodium ion-proton exchanger",
author = "Gurinder Singh and McAteer, {James A.} and Manoocher Soleimani",
year = "1995",
month = "10",
day = "4",
doi = "10.1016/0005-2736(95)00148-V",
language = "English",
volume = "1239",
pages = "74--80",
journal = "Biochimica et Biophysica Acta - Biomembranes",
issn = "0005-2736",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - The effect of lethal acid stress on Na+/H+ exchanger isoforms in cultured inner medullary collecting duct cells

T2 - deletion of NHE-2 and over expression of NHE-1

AU - Singh, Gurinder

AU - McAteer, James A.

AU - Soleimani, Manoocher

PY - 1995/10/4

Y1 - 1995/10/4

N2 - Cultured inner medullary collecting duct (mIMCD-3) cells express Na+/H+ exchanger isoforms NHE-2 and NHE-1 (Soleimani et al. (1994) J. Biol. Chem. 269, 27973-27978). In the present studies we examined the effect of lethal acid stress on Na+/H+ exchanger activity and isoform expression in mIMCD-3 cells. mIMCD-3 cells were incubated for 10 min with 20 mM ammonium, and exposed to an ammonium-free acidic solution (pH 6.0) for 120 min. Thereafter, cells were recovered and grown in normal culture media. The surviving clones were isolated and subjected to two additional cycles of acid stress. A mutant clone was isolated and characterized for Na+/H+ exchange activity and isoform expression. The mutant mIMCD-3 clone demonstrated significant over-expression of Na+/H+ exchange activity as assessed by acid-stimulated 22Na influx (11.56 nmol/mg protein in mutant vs. 4.06 nmol/mg in parent cells, P < 0.001, n = 4) and sodium-dependent pHi recovery from an acid load (0.55 pH/min in mutant vs. 0.28 pH/min in parent cells, P < 0.01, n = 6). A dose-response inhibition of the exchanger showed that the mutant cells were very sensitive to dimethylamiloride (IC50 158 nM in mutant vs. 889 nM in parent mIMCD-3 cells, P < 0.001). To compare the Na+/H+ exchanger isoforms in mutant and parent mIMCD-3 cells, poly(A)+ RNA was isolated from each group and probed with radiolabeled NHE-1 or NHE-2 cDNA. The expression of NHE-1 mRNA was increased by ∼100% in mutant cells. The NHE-2 mRNA, on the other hand, was found to be absent in mutant mIMCD-3 cells. Examination of the regulatory mechanisms of the Na+/H+ exchanger isoforms in parent mIMCD-3 cells, which express NHE-2 and NHE-1, and mutant mIMCD-3 cells, which only express NHE-1, would be helpful in elucidating the roles of NHE-2 and NHE-1 in inner medullary collecting duct cells.

AB - Cultured inner medullary collecting duct (mIMCD-3) cells express Na+/H+ exchanger isoforms NHE-2 and NHE-1 (Soleimani et al. (1994) J. Biol. Chem. 269, 27973-27978). In the present studies we examined the effect of lethal acid stress on Na+/H+ exchanger activity and isoform expression in mIMCD-3 cells. mIMCD-3 cells were incubated for 10 min with 20 mM ammonium, and exposed to an ammonium-free acidic solution (pH 6.0) for 120 min. Thereafter, cells were recovered and grown in normal culture media. The surviving clones were isolated and subjected to two additional cycles of acid stress. A mutant clone was isolated and characterized for Na+/H+ exchange activity and isoform expression. The mutant mIMCD-3 clone demonstrated significant over-expression of Na+/H+ exchange activity as assessed by acid-stimulated 22Na influx (11.56 nmol/mg protein in mutant vs. 4.06 nmol/mg in parent cells, P < 0.001, n = 4) and sodium-dependent pHi recovery from an acid load (0.55 pH/min in mutant vs. 0.28 pH/min in parent cells, P < 0.01, n = 6). A dose-response inhibition of the exchanger showed that the mutant cells were very sensitive to dimethylamiloride (IC50 158 nM in mutant vs. 889 nM in parent mIMCD-3 cells, P < 0.001). To compare the Na+/H+ exchanger isoforms in mutant and parent mIMCD-3 cells, poly(A)+ RNA was isolated from each group and probed with radiolabeled NHE-1 or NHE-2 cDNA. The expression of NHE-1 mRNA was increased by ∼100% in mutant cells. The NHE-2 mRNA, on the other hand, was found to be absent in mutant mIMCD-3 cells. Examination of the regulatory mechanisms of the Na+/H+ exchanger isoforms in parent mIMCD-3 cells, which express NHE-2 and NHE-1, and mutant mIMCD-3 cells, which only express NHE-1, would be helpful in elucidating the roles of NHE-2 and NHE-1 in inner medullary collecting duct cells.

KW - (mIMCD-3 cell)

KW - Acid stress

KW - Isoform

KW - NHE-1

KW - NHE-2

KW - Sodium ion-proton exchanger

UR - http://www.scopus.com/inward/record.url?scp=0029112783&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029112783&partnerID=8YFLogxK

U2 - 10.1016/0005-2736(95)00148-V

DO - 10.1016/0005-2736(95)00148-V

M3 - Article

C2 - 7548147

AN - SCOPUS:0029112783

VL - 1239

SP - 74

EP - 80

JO - Biochimica et Biophysica Acta - Biomembranes

JF - Biochimica et Biophysica Acta - Biomembranes

SN - 0005-2736

IS - 1

ER -