The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias)

S. Perry, C. Montpetit, J. McKendry, P. R. Desforges, K. Gilmour, C. Wood, Kenneth Olson

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The aim of the present study was to evaluate the effects of endothelin-1-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg-1) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by ∼1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (∼0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml-1) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by ∼10 mmHg at 6-10 rain after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.

Original languageEnglish
Pages (from-to)623-634
Number of pages12
JournalJournal of Comparative Physiology B
Volume171
Issue number8
DOIs
StatePublished - 2001

Fingerprint

Squalus acanthias
Dogfish
endothelins
Trout
Oncorhynchus mykiss
Physiology
Endothelin-1
Fresh Water
trout
physiology
partial pressure
blood
Partial Pressure
Partial pressure
injection
cardiac output
Injections
Cardiac Output
Arterial Pressure
Blood

Keywords

  • Carbonic anhydrase
  • Cardiac output
  • Catecholamines
  • Endothelin-1
  • Ventilation

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Environmental Science(all)
  • Physiology
  • Physiology (medical)

Cite this

The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). / Perry, S.; Montpetit, C.; McKendry, J.; Desforges, P. R.; Gilmour, K.; Wood, C.; Olson, Kenneth.

In: Journal of Comparative Physiology B, Vol. 171, No. 8, 2001, p. 623-634.

Research output: Contribution to journalArticle

@article{af3471d44d204359be0d34534fdf3a0f,
title = "The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias)",
abstract = "The aim of the present study was to evaluate the effects of endothelin-1-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg-1) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by ∼1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (∼0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml-1) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by ∼10 mmHg at 6-10 rain after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.",
keywords = "Carbonic anhydrase, Cardiac output, Catecholamines, Endothelin-1, Ventilation",
author = "S. Perry and C. Montpetit and J. McKendry and Desforges, {P. R.} and K. Gilmour and C. Wood and Kenneth Olson",
year = "2001",
doi = "10.1007/s003600100213",
language = "English",
volume = "171",
pages = "623--634",
journal = "Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology",
issn = "0174-1578",
publisher = "Springer Verlag",
number = "8",

}

TY - JOUR

T1 - The effects of endothelin-1 on the cardiorespiratory physiology of the freshwater trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias)

AU - Perry, S.

AU - Montpetit, C.

AU - McKendry, J.

AU - Desforges, P. R.

AU - Gilmour, K.

AU - Wood, C.

AU - Olson, Kenneth

PY - 2001

Y1 - 2001

N2 - The aim of the present study was to evaluate the effects of endothelin-1-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg-1) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by ∼1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (∼0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml-1) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by ∼10 mmHg at 6-10 rain after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.

AB - The aim of the present study was to evaluate the effects of endothelin-1-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg-1) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by ∼1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (∼0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml-1) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by ∼10 mmHg at 6-10 rain after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.

KW - Carbonic anhydrase

KW - Cardiac output

KW - Catecholamines

KW - Endothelin-1

KW - Ventilation

UR - http://www.scopus.com/inward/record.url?scp=0035212009&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035212009&partnerID=8YFLogxK

U2 - 10.1007/s003600100213

DO - 10.1007/s003600100213

M3 - Article

VL - 171

SP - 623

EP - 634

JO - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology

JF - Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology

SN - 0174-1578

IS - 8

ER -