The effects of lesion baseline characteristics and different Sr:Ca ratios in plaque fluid-like solutions on caries lesion de- and remineralization

Research output: Contribution to journalArticle

3 Scopus citations


This study investigated the effects of lesion baseline characteristics and different strontium (Sr) to calcium (Ca) ratios in plaque fluid-like solutions (PF) on lesion de- and remineralization. Caries lesions were formed in enamel using three protocols: methylcellulose acid gel (MeC) and partially saturated lactic acid solutions containing carboxymethylcellulose (CMC) or not (SOLN). Lesions were exposed to PF with four distinct Sr:Ca molar ratios (0:1/3:1:3), but otherwise identical composition and total Sr+Ca molarity, for seven days. Lesions were characterized using transverse microradiography (TMR) at baseline and post-treatment. At baseline, MeC and CMC had similar integrated mineral loss values, whereas SOLN lesions were more demineralized. All lesions showed significant differences in their mineral distributions, with CMC and SOLN having lower R values (integrated mineral loss to lesion depth ratio) than MeC. Post-PF exposure, no interaction was found between lesion type and Sr:Ca ratio. Within lesion type, MeC demineralized, whereas CMC and SOLN exhibited some remineralization, with the differences between MeC and the other lesion types being of statistical significance. Within Sr:Ca ratio, the 1:3 ratio exhibited some remineralization whereas other groups tended to demineralize. Only the difference between groups SrCa1/3 and SrCa0 was of statistical significance. In summary, both lesion baseline characteristics and Sr:Ca ratio were shown to effect lesion de- and remineralization. Under the conditions of the study, high-R lesions are more prone to demineralize under PF-like conditions than low-R lesions. In addition, partial Sr substitution for Ca in PF was shown to enhance lesion remineralization.

Original languageEnglish (US)
Pages (from-to)1299-1306
Number of pages8
JournalArchives of Oral Biology
Issue number10
StatePublished - Oct 1 2012



  • Demineralization
  • Fluoride
  • Plaque fluid
  • Remineralization
  • Strontium

ASJC Scopus subject areas

  • Otorhinolaryngology
  • Dentistry(all)
  • Cell Biology

Cite this