The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs

James R. Butler, Gregory R. Martens, Ping Li, Zheng Yu Wang, Jose L. Estrada, Joseph M. Ladowski, Matt Tector, A. Joseph Tector

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

BACKGROUND: Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered.

METHODS: Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy.

RESULTS: Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls.

CONCLUSIONS: Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.

Original languageEnglish (US)
Pages (from-to)698-706
Number of pages9
JournalJournal of Surgical Research
Volume200
Issue number2
DOIs
StatePublished - Feb 1 2016

Fingerprint

Endothelium
Swine
Blood Platelets
Kidney
Heterologous Transplantation
Cytidine Monophosphate N-Acetylneuraminic Acid
Endothelial Cells
Liver
Clustered Regularly Interspaced Short Palindromic Repeats
Galactosyltransferases
Blood Banks
Sus scrofa
Inferior Vena Cava
Blood Donors
Heterografts
Confocal Microscopy
Thrombocytopenia
Primates
Coloring Agents
Perfusion

Keywords

  • Kidney
  • Platelets
  • Thrombocytopenia
  • Xenotransplantation

ASJC Scopus subject areas

  • Medicine(all)

Cite this

The fate of human platelets exposed to porcine renal endothelium : a single-pass model of platelet uptake in domestic and genetically modified porcine organs. / Butler, James R.; Martens, Gregory R.; Li, Ping; Wang, Zheng Yu; Estrada, Jose L.; Ladowski, Joseph M.; Tector, Matt; Tector, A. Joseph.

In: Journal of Surgical Research, Vol. 200, No. 2, 01.02.2016, p. 698-706.

Research output: Contribution to journalArticle

Butler, James R. ; Martens, Gregory R. ; Li, Ping ; Wang, Zheng Yu ; Estrada, Jose L. ; Ladowski, Joseph M. ; Tector, Matt ; Tector, A. Joseph. / The fate of human platelets exposed to porcine renal endothelium : a single-pass model of platelet uptake in domestic and genetically modified porcine organs. In: Journal of Surgical Research. 2016 ; Vol. 200, No. 2. pp. 698-706.
@article{a0ebf94488bd494788915a276111b0c3,
title = "The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs",
abstract = "BACKGROUND: Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered.METHODS: Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy.RESULTS: Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76{\%} of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls.CONCLUSIONS: Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.",
keywords = "Kidney, Platelets, Thrombocytopenia, Xenotransplantation",
author = "Butler, {James R.} and Martens, {Gregory R.} and Ping Li and Wang, {Zheng Yu} and Estrada, {Jose L.} and Ladowski, {Joseph M.} and Matt Tector and Tector, {A. Joseph}",
year = "2016",
month = "2",
day = "1",
doi = "10.1016/j.jss.2015.08.034",
language = "English (US)",
volume = "200",
pages = "698--706",
journal = "Journal of Surgical Research",
issn = "0022-4804",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - The fate of human platelets exposed to porcine renal endothelium

T2 - a single-pass model of platelet uptake in domestic and genetically modified porcine organs

AU - Butler, James R.

AU - Martens, Gregory R.

AU - Li, Ping

AU - Wang, Zheng Yu

AU - Estrada, Jose L.

AU - Ladowski, Joseph M.

AU - Tector, Matt

AU - Tector, A. Joseph

PY - 2016/2/1

Y1 - 2016/2/1

N2 - BACKGROUND: Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered.METHODS: Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy.RESULTS: Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls.CONCLUSIONS: Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.

AB - BACKGROUND: Thrombocytopenia may represent a significant challenge to the clinical application of solid-organ xenotransplantation. When studied in a pig-to-primate model, consumptive coagulopathy has challenged renal xenografts. New strategies of genetic manipulation have altered porcine carbohydrate profiles to significantly reduce human antibody binding to pig cells. As this process continues to eliminate immunologic barriers to clinical xenotransplantation, the relationship between human platelets and pig organs must be considered.METHODS: Genetically modified pigs that were created by the CRISPR/Cas9 system with α-1,3-galactosyltransferase (GGTA1)(-/-) or GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-) phenotype, as well as domestic pigs, were used in this study. Autologous porcine platelets were isolated from donor animal blood collection, and human platelets were obtained from a blood bank. Platelets were fluorescently labeled and in a single-pass model, human, or autologous platelets were perfused through porcine organs at a constant concentration and controlled temperature. Platelet uptake was measured by sampling venous output and measuring sample florescence against input florescence. In vitro study of the interaction between human platelets and porcine endothelial cells was accomplished by immunohistochemical stain and confocal microscopy.RESULTS: Differences between human and autologous platelet loss through the porcine kidney were not significant in any genetic background tested (WT P = 0.15, GGTA1(-/-)P = 0.12, GGTA1(-/-) cytidine monophosphate-N-acetylneuraminic acid hydroxylase(-/-)P = 0.25). The unmodified porcine liver consumed human platelets in a single-pass model of platelet perfusion in fewer than 10 min. WT suprahepatic inferior vena cava fluoresce reached a maximum of 76% of input fluoresce within the human platelet cohort and was significantly lower than the autologous platelet control cohort (P = 0.001). Confocal microscopic analysis did not demonstrate a significant association between human platelets and porcine renal endothelial cells compared with porcine liver endothelial positive controls.CONCLUSIONS: Our results suggest that in the absence of immunologic injury, human platelets respond in a variable fashion to organ-specific porcine endothelial surfaces. Human platelets are not removed from circulation by exposure to porcine renal endothelium but are removed by unmodified porcine hepatic endothelium. Kidneys possessing genetic modifications currently relevant to clinical xenotransplantation failed to consume human platelets in an isolated single-pass model. Human platelets did not exhibit significant binding to renal endothelial cells by in vitro assay.

KW - Kidney

KW - Platelets

KW - Thrombocytopenia

KW - Xenotransplantation

UR - http://www.scopus.com/inward/record.url?scp=84966340098&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966340098&partnerID=8YFLogxK

U2 - 10.1016/j.jss.2015.08.034

DO - 10.1016/j.jss.2015.08.034

M3 - Article

C2 - 26375504

VL - 200

SP - 698

EP - 706

JO - Journal of Surgical Research

JF - Journal of Surgical Research

SN - 0022-4804

IS - 2

ER -